Recent Results on Acoustic Metamaterials and Sonic Crystals

José Sánchez-Dehesa

Wave Phenomena Group, Universitat Politècnica de València, Camino de vera s.n., ES-46022 Valencia, Spain

Outline

1. Introduction
2. Acoustic metamaterials with negative parameters
3. Visco-thermal effects in acoustic metamaterials with double-negative parameters
4. Sound absorption and redirection with sonic crystals based on metamaterials units

METAgentierie2017, 2-7 July.
Recent Results on Acoustic metamaterials

OUTLINE

1. Introduction
2. Acoustic metamaterials with negative parameters
3. Visco-thermal effects in acoustic metamaterials with double-negative parameters
4. Sound absorption and redirection with sonic crystals based on metamaterial units

METAgenierie2017, 2-7 July.
Acoustic metamaterials are artificial structures made of subwavelength units such that their acoustic properties are NEW in comparison with that of the building units.
Acoustic metamaterials

\[c = \sqrt{\frac{\kappa}{\rho}} \]

\(\kappa \): bulk modulus
\(\rho \): density
\(c \): speed of sound

(Monopolar +dipolar Resonances)

(Dipolar resonances)

(No resonances)

METAgenierie2017, 2-7 July.

Li and Chan, PRE (2004)

Acoustic metamaterials / Metafluids

\(\rho_{\text{eff}} < 0 \)

(No resonances)

\(\rho_{\text{eff}} > 0 \)

\(B_{\text{eff}} > 0 \)

\(\rho_{\text{eff}} < 0 \)

\(B_{\text{eff}} < 0 \)

Z. Yang et al. PRL (2008)

S.H. Lee et al. PRL (2010)

N. Fang et al. Nat. Mat (2006)
Recent Results on Acoustic metamaterials

OUTLINE

1. Introduction

2. Acoustic metamaterials with negative parameters

3. Visco-thermal effects in double-negative acoustic metamaterials

4. Sound redirection and splitting based on metamaterial units
INTRODUCTION: metamaterials with negative bulk modulus

N. Fang et al., *Ultrasonic metamaterials with negative bulk modulus*, Nat. Mat. 5, 452 (2006)

1D waterfilled waveguide

Effective modulus:

\[
E^{-1}_{\text{eff}}(\omega) = E_0^{-1} \left[1 - \frac{F\omega^2}{\omega^2 - \omega_0^2 + i\Gamma\omega} \right],
\]

where \(\Gamma\) is the dissipation loss in the HR:

\[\Gamma = 2\pi \times 400\text{Hz}\]

METAgenierie2017, 2-7 July.
The quasi-2D metafluid

2D Waveguide \((h) +\) cylindrical holes \((R, L)\)

hexagonal lattice with parameter \(a\)

holes with \(R=1\ cm, L=9\ cm, a=3cm\)

2D waveguide with \(h=5\ cm\)

METAgenierie 2017, 2-7 July.

From $R(\omega)$ and $T(\omega)$

\[B_m^{-1} = B_0^{-1} \left[1 - \frac{F \omega_0^2}{\omega^2 - \omega_0^2 + i \Gamma \omega} \right] \]

\[\omega_0 < \omega < \omega_0 \sqrt{1 + F} \]

Parameters:
\[\omega_0 = 2\pi \times 874 \text{ Hz} \]
\[\Gamma = 2\pi \times 3.4 \text{ Hz} \]

METAgenierie2017, 2-7 July.
Double negative MtM: building unit

- **Pressure Field In the Region I**

\[P^I(r, \theta, z; w) = \sum_{q,n} \left[A_{qn} J_q(K_n^I r) + B_{qn} H_q(K_n^I r) \right] \Phi_n^I(z) \exp(iq\theta) \]

\[K_n^I = \sqrt{\left(\frac{w}{C_b} \right)^2 - \left(\frac{n\pi}{h} \right)^2} \]

- **Pressure Field in the Region II**

\[P^{II}(r, \theta, z; w) = \sum_{q,m} \left[C_{qm} J_q(K_m^{II} r) - \frac{j_q(K_m^{II} R_a)}{\dot{Y}_q(K_m^{II} R_a)} Y_q(K_m^{II} r) \right] \Phi_m^{II}(z) \exp(iq\theta) \]

\[K_m^{II} = \sqrt{\left(\frac{w}{C_b} \right)^2 - \left(\frac{m\pi}{h+L} \right)^2} \]

METAgenierie2017, 2-7 July.
Double negative metamaterial: T matrix approach

Building unit: Metafluid cylinder with $c < c_{\text{air}}$

Bulk modulus: $B_a(\omega)$

$$\frac{B_a}{B_b} = \frac{k_b^2 R_b^2}{2 \ln k_b R_b - \frac{1}{2} k_b R_b \chi_0}$$

Mass density: $\rho_a(\omega)$

$$\frac{\rho_a}{\rho_b} = \frac{\chi_1}{k_b R_b}$$

h=R_b R_a=0.5R_b

$\rho_s = 2\rho_{\text{air}}$, $c_s = 0.3c_{\text{air}}$

METAgenierie2017, 2-7 July.
MtM with negative parameters: resonant behavior of the building units

Scatter Pressure Field

\[B_\alpha(\omega)/B_b \]

- Monopolar Resonances

\[\nu = 0.06u_r \]

Graciá-Salgado, Torrent and JSD, NJP 14, 103052 (2011)

\[d_\alpha(\omega)/d_b \]

- Dipolar Resonances

\[\nu = 0.12u_r \]

METAgenierie2017, 2-7 July.
Quasi-2D structure for double negative and $\rho \approx 0$ (DNZ) behavior

Scheme of the artificial structure

Building unit

Transversal section

$\rho_s = \frac{d_1 + d_2}{d_2} \rho_b = 2\rho_b$

Spioucas et al., APL (2011)

METAgenierie2017, 2-7 July.
Quasi-2D structure for double negative and DNZ behavior

ω-L Phase diagram

- $\rho_m < 0$
- $B_m < 0$

$L = 3.5 \ h; \ R_a = 0.5 \ R_b$

ω-R_h Phase diagram

- $B_m < 0$
- $\rho_m < 0$

$L = 3.5 \ h$

METagenierie2017, 2-7 July.
\[\rho_m < 0 \approx 0; \quad B_m < 0 \]

\[c_m = \sqrt{\frac{B_m}{\rho_m}} \rightarrow \infty \]

\[n_m \approx 0 \]

\[|Z_m|^2 = \rho_m B_m \approx \rho_b B_b = |Z_b|^2 \]

Transmission through narrow channels \(\lambda >> a \)

EM counterpart: Edwards *et al.*, PRL 100, 033903 (2008)

Liu *et al.*, PRL 100, 023903 (2008)
Applications of DNZ metamaterials: control of the radiation pattern

Scattering by a rigid cylinder + MtM slab (both embedded in a 2D waveguide)

Scattering at the frequency where the MtM behaves as a ρ-near-zero material

METAconference 2017, 2-7 July.
Applications of DNZ metamaterials:

- Power splitter
- Perfect transmission through waveguides with sharp corners
Quasi-2D acoustic metamaterials: Practical realization

Sample A
$a=21\text{ mm}$
$R_b=9.2\text{mm}$
$h=9\text{mm}$
$L=3.5h$

Sample B
$a=21\text{ mm}$
$R_b=7\text{mm}$
$h=9\text{mm}$
$L=2.5h$

METAgenierie2017, 2-7 July.
Quasi-2D acoustic metamaterials: Practical realization

Experimental characterization

Double negative

$\rho_m < 0$

Sample A

Sample B

Double negative

Model

Acoustic metamaterials

OUTLINE

1. Introduction
2. Acoustic metamaterials with negative mass density and density near zero
3. Visco-thermal in acoustic metamaterials with double-negative parameters
4. Sound redirection and splitting with sonic crystals based on metamaterial units
Viscous boundary layer

\[V_t = 0 \text{ at the boundary} \]

Thermal boundary layer

\[\approx 2.5 \times 10^{-3} (f)^{-1/2} \text{ m} \]

Viscous losses

\[\approx \text{constant temperature} \]

Thermal losses

\[\approx \text{constant temperature} \]

Table

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>viscous layer (μm)</th>
<th>thermal layer (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>210</td>
<td>250</td>
</tr>
<tr>
<td>1000</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>10000</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>20000</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

METAgenierie2017, 2-7 July.
Linearized Navier-Stokes model:

- Conservation of mass:
 \[
 \frac{\partial \rho}{\partial t} + \rho \nabla \vec{v} = 0
 \]

- Conservation of energy:
 \[
 \rho_o T_o \frac{\partial s}{\partial t} = \lambda \Delta T
 \]

- Conservation of momentum (Navier-Stokes equation):
 \[
 \rho_o \frac{\partial \vec{v}}{\partial t} = -\nabla p + \left(\eta + \frac{4}{3} \mu \right) \nabla \Phi \vec{v} - \mu \nabla \times \nabla \times \vec{v}
 \]

- Thermodynamic equations:
 \[
 s = \frac{C_p}{T_o} \left(T - \frac{\gamma - 1}{\beta \gamma} p \right)
 \]

 \[
 \rho = \frac{\gamma}{c^2} \Phi - \beta T
 \]
Numerical methods for Visco-Thermal losses

Low reduced frequency model (LRFM):
- Neglects pressure variation and velocity component in the direction normal to the boundary. Restricted to some geometries

Finite Element Method (FEM) implementation:
- Direct implementation of the linearized Navier-Stokes equations. No restricting assumptions.

Boundary Element Method (BEM) implementation:
- Uses Kirchhoff’s decomposition of the linearized N-S equations. No restricting assumptions.

<table>
<thead>
<tr>
<th>Time/Load</th>
<th>SW package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast/Low</td>
<td>ACTRAN, ANSYS, COMSOL</td>
</tr>
<tr>
<td>Slow/High</td>
<td>COMSOL</td>
</tr>
<tr>
<td>Slow/High</td>
<td>OpenBEM (non-commercial)</td>
</tr>
</tbody>
</table>

Metamaterial: transmission and reflection

Three-point method: Reflection and transmission coefficients:

\[R(\omega) = \frac{p_2 e^{-i k x_2}}{p_1 e^{-i k x_2}} - \frac{p_1 e^{-i k x_2}}{p_2 e^{-i k x_1}} \]
\[T(\omega) = \frac{p_3}{p_2} \frac{e^{-i k x_2} + R(\omega) e^{i k x_2}}{e^{-i k x_3}} e^{-i k x_2 - x_1} \]

- Transmittance (fraction of transmitted power): \(|T(\omega)|^2\)
- Reflectance (fraction of reflected power): \(|R(\omega)|^2\)
- Absorbance (fraction of absorbed power): \(1 - |T(\omega)|^2 - |R(\omega)|^2\)
Double-negative metamaterial

BEM: mesh with 4810 quadratic elements and 9616 nodes

METAgenierie2017, 2-7 July.
FEM versus BEM

![Graph comparing FEM and BEM transmittance vs frequency.](image-url)
Acoustic band structure (no losses)
Parameter extraction (with losses)

\[B_m' < 0 \]

\[\rho_m' < 0 \]

Frequency (kHz)

METAgenierie2017, 2-7 July.

Extracted from R and T, following the method of Fokin et al., PRB 77, 144302 (2007)
Absorption in the first passband increases with decreasing v_g.

In the DN band there is a huge reflectance and almost a 100% of the transmitted energy is absorbed.
No losses

With losses

\[f_{FP} = 1675 \text{ Hz} \]
Double-negative metamaterial

Visco-thermal effects on the double-negative band

$f_{DN}=2380 \text{ Hz}$

No losses

With losses

METAgenierie2017, 2-7 July.
Scaling of the metamaterial

- As the size grows the frequency is scaled down: the mesh can be reused
- The behavior should be the same, except for viscous and thermal losses (as $f^{1/2}$):

$$
\delta_v \approx \sqrt{\frac{2v}{\rho_0 \omega}} \\
\delta_\kappa \approx \sqrt{\frac{2\kappa}{c_p \rho_0 \omega}}
$$

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>viscous layer (µm)</th>
<th>thermal layer (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>210</td>
<td>250</td>
</tr>
<tr>
<td>1000</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>10000</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>20000</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
Double-negative metamaterial

METAgenierie2017, 2-7 July.
Double-negative metamaterial

- Transmittance
- Reflectance
- Absorbance
Visco-thermal effects:

• Visco-thermal losses **should be considered** in order to obtain a realistic design of single- and double-negative metamaterials.

• The double-negative phenomena might be **suppressed by losses**.

• High loss is **persistent** at the double-negative band, even when the structure is **scaled up**.

• Double-negative metamaterials might be a **good alternative to conventional absorbers** for specific situations, e.g., when dealing low frequencies or when the excitation is narrow banded.

• Some properties of metamaterials may survive losses, with the proper design:
 – Use less rows of units.
 – Find resonators with less losses (e.g. with optimization)

METAgenierie2017, 2-7 July.
Recent Results on Acoustic metamaterials

OUTLINE

1. Introduction
2. Acoustic metamaterials with negative parameters
3. Viscothermal effects in acoustic metamaterials with double-negative parameters
4. Sound absorption and redirection with sonic crystals based on metamaterial units
Sonic crystals / Phononic Crystals

Eusebio Sempere (Spanish artist)

Transmission properties of sonic crystals

\[f = 0.4 \]

\(\omega(k) \)

Complete bandgap

METAgenierie2017, 2-7 July.

What is the minimum number of rows?

Multiple scattering simulations

3 rows
h=3 m

α=22 cm

d=16 cm

METAgenterie2017, 2-7 July.
Noise barriers made of porous materials (rubber crumb)

300 million used tires are removed annually in the 27 EU Member states

- Perforated shells with mm-size holes are (almost) acoustically transparent.
- They are used as containers of absorbing materials (rubber crumb, fiber glass, etc.).

Rubber crumb: 0-7mm
Objetive function: index of isolation for airborne noise

$$DL_R = -10 \log \left(\sum_{i=1}^{18} 10^{0.1L_i} 10^{-0.1R_i} \right)$$

\((UNE-EN 1793) \)

\(L_i \) is the normalized spectrum of traffic noise (defined in 18 thirds of octave band between 100 Hz and 5kHz)

\(R_i \) is the transmission loss by the barrier

Class B_1: \(DL_R < 15 \text{ dB} \)

Class B_2: \(DL_R = 15 \text{ dB to } 24 \text{ dB} \)

Class B_3: \(DL_R > 24 \text{ dB} \)
Barriers for traffic noise based on rubber crumb

Table 1
Barrier parameters (see Fig. 2) obtained from the optimization algorithm. Length dimensions are in cm. Last row contains the airborne insulation index DL_R. Note that the highest quality barriers, class B_3, according to the European normative is achieved when $DL_R > 24$ dB [16].

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T_{eff}</th>
<th>T'_{eff}</th>
<th>T''_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\Box</td>
<td>Δ</td>
<td>\Box</td>
<td>Δ</td>
</tr>
<tr>
<td>r_1</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>r_2</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>r_3</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>r_{i1}</td>
<td>4.6</td>
<td>10.0</td>
<td>3.4</td>
<td>5.1</td>
</tr>
<tr>
<td>r_{i2}</td>
<td>4.3</td>
<td>5.0</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td>r_{i3}</td>
<td>4.7</td>
<td>9.5</td>
<td>4.5</td>
<td>10.0</td>
</tr>
<tr>
<td>d_1</td>
<td>32.1</td>
<td>18.2</td>
<td>31.2</td>
<td>18.2</td>
</tr>
<tr>
<td>d_2</td>
<td>48.9</td>
<td>18.2</td>
<td>49.8</td>
<td>18.2</td>
</tr>
<tr>
<td>D</td>
<td>40.0</td>
<td>21.0</td>
<td>40.0</td>
<td>21.0</td>
</tr>
<tr>
<td>DL_R (dB)</td>
<td>7.2</td>
<td>18.6</td>
<td>6.7</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Class B_3: $DL_R > 24$ dB
Noise barriers based on μ-perforated shells

Properties of flat perforated panels

- Impedance of a flat perforated panel \cite{Ingard, Allard, Atalla, Åbom, etc.}:

$$Z_p = \frac{i\omega \rho_0 t}{\sigma} \left[1 - \frac{2}{s - i} \frac{J_1(s\sqrt{-i})}{J_1(s\sqrt{-i})} \right]^{-1} + \frac{4}{\sigma} \sqrt{2\eta_0 \omega \rho_0} + \frac{i\omega \rho_0}{\sigma} \frac{16r}{3\pi} \left(1 - 2.5 \sqrt{\frac{\sigma}{\pi}} \right)$$

For large holes $r \gg \delta = \sqrt{\frac{2\eta_0}{\rho_0 \omega}}$

and moderate filling fractions σ, the panel has low Z_p.

Small holes ($r \approx 1 \mu$m) lead to absorbing panels.

Perforated cylindrical shells
multiple scattering approach

The T-matrix of a perforated shell is obtained from an impedance based model:

\[T_q = -\frac{\rho_q J'_q \left(t_0 R^+ \right) - J_q \left(t_0 R^+ \right)}{\rho_q H'_q \left(t_0 R^+ \right) - H_q \left(t_0 R^+ \right)} \]

\[\rho_q = \frac{J_q \left(t_0 R^- \right)}{J'_q \left(t_0 R^- \right)} \frac{iZ_p k_0}{\omega \rho_0} \]

Transmission through a lattice of perforated shells has been calculated using Multiple Scattering Theory.

García-Chocano, Cabrera and JSD., APL 101, 184101 (2012)
μ-perforated shells are interesting due to the absorptive properties of μ-perforations.

3 rows of 30 cylinders (R=16cm, h=3m) and a=22cm.
Acoustic barriers based on lattices of μ-perforated shells

PROS:

• No foundations are needed
• The flow of wind passes through the barrier
• Lightweight and robust
• Great aesthetic

CONS:

• Expensive
(The cost can be substantially reduced by using massive manufacturing methods)

2011

METAgienierie2017, 2-7 July.
Redirection of sound with a sonic crystal made of perforated thin shells
Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

Yuriy A. Kosevich,¹,* Cecile Goffaux,²,† and Jose Sánchez-Dehesa¹,‡

\[\nu_n = \frac{n(n^2 - 1)}{d \sqrt{1 + n^2}} \frac{C_{ls}}{r^2 4\pi}, \]

4 layers Sonic Cristal

\[a = 11 \text{ cm} \]

Thickness

- d = 1.2 mm
- d = 1.8 mm
- d = 1.9 mm
- d = 2.0 mm
if λ is on the order of the spacing, the scattered quadrupoles are in phase and coherently redirect acoustic energy by 90 degrees.
Absorption enhancement occurs at the frequencies with minimum transmittance.

\[A = 1 - R - T \]

- Reflectance
- Transmittance
- Absorption

\[R = 4\text{cm} \]
\[r = 0.25\text{mm} \]
\[t = 0.50\text{mm} \]
\[\sigma = 14.5\% \]
\[a = 11\text{cm} \]

\[\lambda \approx a \]

3 rows of cylindrical shells

Numerical simulations (\(\eta_0 \neq 0 \))

METAgenierie 2017: 2-7 July.
Non-dissipative case ($\eta_0=0$)

- Full transmission occurs except at around 3kHz.
- Total reflection is found at $\lambda \approx a$ even for one row.
- T minima show Fano-like profiles indicating the excitation of resonant Wood anomalies.

Frequency

- 3080+i4
- 3042+i14
- 3105+i5
- 3034+i21
- 3059+i1
- 3103+i2
Energy redirection due to Wood anomalies

- The resonant anomaly involves modes guided along the slab.
- Propagating modes are observed when exciting the slab with a Gaussian beam.

Pressure at the far field (a. u.)

3037 Hz

METAgenierie2017, 2-7 July.

Energy splitting with a linear chain of perforated thin shells
The case of a linear chain

Incident plane wave:

\[p(r) = p_0 \exp(ik \cdot r) \]

Acoustic field inside each shell:

\[p_{in}(r_l, \varphi_l) = \sum_{n=-\infty}^{\infty} C_{ln} J_n(kr_l) e^{in\varphi_l} \]

Scattered acoustic field:

\[p_{sc}(r, \varphi) = \sum_{l'} \sum_{n=-\infty}^{+\infty} B_{l'n} H_n(kr_{l'}) e^{in\varphi_{l'}} \]

METAgenierie2017, 2-7 July.
Boundary conditions

The **impedance approach** is used to match the acoustic fields *inside* and *outside* each individual microperforated shell.

\[v_r|_{r=a} = v_r|_{r=b} = \frac{p|_{r=b} - p|_{r=a}}{Z_p} \]

continuity of normal velocity

normal velocity is due to the discontinuous jump of pressure

Effective acoustic impedance of the flat plate:

\[Z_p = -\frac{i\omega \rho_0}{\sigma} \left[h + \frac{16s}{3\pi} \left(1 - 2.5 \sqrt{\frac{\sigma}{\pi}} \right) \right] \]

METAgenerie2017, 2-7 July.
Acoustic band structure: $\omega(q)$

After some algebra...

\[\det \left| S_n \delta_{nn'} + F(n' - n) \right| = 0. \]

$n = 0, \pm 1, \pm 2, \ldots$

The eigenmode is excited if asymmetric bandgap eigenmodes are leaky (even w/o viscosity), so they can be excited.

infinite chain

\[k_y = (2\pi f/c) \sin \theta = q(f) \]

\(\theta = 0\) symmetric

\(\theta = 5\)

asymmetric bandgap

METAgenierie2017, 2-7 July.
Eigenmode excitation

\[f_1 = 2625 \text{ Hz} \]

\[f_2 = 3715 \text{ Hz} \]

“normal” mode

“anomalous” mode

\[\theta = 10 \]

METAgenierie2017, 2-7 July.
Splitting of a bi-frequency signal

25 perforated shells

inviscid air
8% (low f. component)
10% (high f. component)

viscous air
5% (low f. component)
7% (high f. component)

Mixture of the two sound waves

Low frequency component (in red) propagates against the natural direction!!

Splitting of a bi-frequency signal

Numerical experiments (FEM simulations)

\[f_1 = 2520 \text{ Hz} \quad \text{METAgenierie2017, 2-7 July.} \]

\[f_1 = 3520 \text{ Hz} \]
Thanks for your attention!