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Context

Cours détaillé introductif, B. Djafari-Rouhani

Métamatériaux dans l’industrie de l’acoustique audible : Cas du
métaporeux, C. Lagarrigue

Métamateriaux acoustiques, J. Sánchez-Dehesa

Relation de dispersion - PWE, EPWE, J. Vasseur

Métamatériaux et aspects perceptifs, N. Côté

Technique d’homogénéisation, A. Maurel

Sonic Crystals

Particular case of phononic crystal with a fluid as host medium.

Made of rigid, penetrable or resonance scatterers.
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series, Arch. Ration. Mech. An., 8:323-332, 1961

Abramowitz & Stegun, Handbook of Mathematical Functions With
Formulas, Graphs, and Mathematical Tables, 1964

Barber and Hill, Light Scattering by Particles: Computational
Methods, World Scientific Publishing, 1990

D. Torrent, Multiple Scattering Theory, Training School: Sound
waves in metamaterials and porous media, www.denorms.eu

...

3 / 62 J.-P. Groby Multiple Scattering Theory



Outline

Part I. Introduction
What is scattering?
One dimensional scattering

Part II. Scattering by circular rigid cylinders
General background
Scattering by a single circular cylinder
Scattering by N circular cylinders

Part III. Scattering by a periodic arrangement of circular
cylinders

Scattering of a plane incident by an array of rigid cylinders
Reflection and transmission coefficients by an array of rigid cylinders
Reflection and Transmission coefficients by a stack of gratings
Band diagram calculation

4 / 62 J.-P. Groby Multiple Scattering Theory



Part I. Introduction
What is scattering?

One dimensional scattering

5 / 62 J.-P. Groby Multiple Scattering Theory



What is scattering?
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What wikipedia says?

Scattering is a general physical process where some forms of radiation,
such as light, sound, or moving particles, are forced to deviate from a
straight trajectory by one or more paths due to localized non-
uniformities in the medium through which they pass. In conventional
use, this also includes deviation of reflected radiation from the angle
predicted by the law of reflection. Reflections that undergo scattering are
often called diffuse reflections and unscattered reflections are called
specular (mirror-like) reflections.

Is it more related to energy?
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What is Single and Multiple Scattering?

When radiation is only scattered by one localized scattering center,
this is called single scattering. It is very common that scattering
centers are grouped together; in such cases, radiation may scatter
many times, in what is known as multiple scattering. The main
difference between the effects of single and multiple scattering is that
single scattering can usually be treated as a random phenomenon,
whereas multiple scattering, somewhat counterintuitively, can be
modeled as a more deterministic process because the combined results
of a large number of scattering events tend to average out. Multiple
scattering can thus often be modeled well with diffusion theory.
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Physical interpretation of the bandgap: Bragg interferences

2d sin θ = nλ.

In particular, only specularly reflected and transmitted waves are
propagative in the surrounding medium for finite depth sonic crystals
within the first Bragg bandgap.
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One dimensional scattering
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One dimensional scattering

Pressure field is splitted into upward and downward going
waves: {

p+
u = Rp−u + Tp+

d ,
p−d = Rp+

d + Tp−u ,

in case of reciproque and symetric scattering.
Outgoing waves︷ ︸︸ ︷[

p+
u

p−d

]
=

[
R T
T R

]
︸ ︷︷ ︸

Scattering matrix SC

Ingoing waves︷ ︸︸ ︷[
p−u
p+

d

]
.

SC eigenvalues are λ = (R ± T ): symetric and antisymetric problem.
|λS |2 (|λA|2) reflected energy in the (anti)symetric problem
αS = 1− |λS |2 (αA = 1− |λA|2) absorbed energy in the
(anti)symetric problem

|R|2 =

∣∣∣∣λS + λA

2

∣∣∣∣2 and |T |2 =

∣∣∣∣−λS + λA

2

∣∣∣∣2 reflected and

transmitted energy by the global system

α =
αS + αA

2
absorbed energy by the global system
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Part II. Scattering by circular rigid
cylinders

General background

Scattering by a single circular cylinder

Scattering by N circular cylinders
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General background
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Helmholtz equation in cylindrical coordinates

Helmholtz equation (e−iωt time convention)(
4+ k2

)
p(r) = 0,∀r ∈ R2.

In cylindrical coordinate system, 4 =
∂2

∂r 2
+

1

r

∂

∂r
+

1

r 2

∂2

∂θ2
and the

Helmholtz equation reads as(
∂2

∂r 2
+

1

r

∂

∂r
+

1

r 2

∂2

∂θ2
+ k2

)
p(r) = 0,∀r ∈ R2.

Separation of variables: p(r) = F (θ)G (r), with
F (θ) = F (θ + 2nπ), ∀n ∈ Z (θ periodic) + geometry

1

F (θ)

∂F (θ)2

∂θ2︸ ︷︷ ︸
Function of θ

= −k2r 2 −
(

r 2

G (r)

∂2G (r)

∂r
+

r

G (r)

∂G (r)

∂r

)
︸ ︷︷ ︸

Function of r

,∀r ∈ R2.

14 / 62 J.-P. Groby Multiple Scattering Theory



Solution of the Helholtz equation


1

F (θ)

∂F (θ)2

∂θ2
= −ν2,

F (θ) = F (θ + 2nπ), ∀n ∈ Z,
+ geometry

⇒ F (θ) =
∑
n∈Z

Aeinθ + Be−inθ.

For fixed n, introducing α = kr , Gn(α) satisfies the Bessel’s equation

∂2Gn(α)

∂α2
+

1

α

∂Gn(α)

∂α
+

(
1− n2

α2

)
Gn(α) = 0,

whose solution is

Gn(α) = C Jn(α)︸ ︷︷ ︸
Bessel function of 1st kind

+D

Hankel function of 1st kind︷ ︸︸ ︷
H(1)

n (α) .

p(r) =
∑
n∈Z

(
AnJn(kr) + BnH(1)

n (kr)
)

einθ,

because J−n(kr) = (−1)nJn(kr) and H
(1)
−n(kr) = (−1)nH(1)

n (kr).
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Physical meaning of the solution

Ingoing waves Outgoing waves

Remark: the solution could alternatively be sought in the form

p(r) =
∑
n∈Z

(A′nJn(kr) + B′n Yn(kr)︸ ︷︷ ︸
Bessel function of 2nd kind

) einθ.

The scattering problem also implies to relate Bn to An, ∀n ∈ Z:

B = SCA.
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Scattering by a single cylinder
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Scattering of a plane incident wave by a rigid cylinder

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (r) = eik i
1x1−ik i

2x2 , with k i
1 = −k cos

(
θi
)

and k i
2 =

√
k2 − (k i

1)2, with Re(k i
2) ≥ 0.

Boundary conditions:

V
[0]
r (R) = 0 ⇒ ∂p[0]

∂r

∣∣∣∣
r=R

= 0.

The pressure field in Ω[0] takes the following form

p(r) =
∑
m∈Z
AmJm(kr)eimθ

︸ ︷︷ ︸
Incident field

+
∑
n∈Z
BnH(1)

n (kr)einθ

︸ ︷︷ ︸
Scattered field

.

Remark:

∫ 2π

0

ei(n−m)θdθ = 2πδnm, i.e., einθ is an orthogonal basis.
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Expression of the incident field in C

ki =

[
k i

1 = −k cos
(
θi
)

k i
2 = k sin

(
θi
) ]

, x =

[
x1 = r cos (θ)
x2 = r sin (θ)

]
.

pi (r) = eik i
1x1−ik i

2x2

= e−ik cos(θi )r cos(θ)−ik sin(θi )r sin(θ)

= e−ikr[cos(θi ) cos(θ)+sin(θi ) sin(θ)]

= e−ikr cos(θ−θi ).

Refering to Abramowitz & Stegun, 1964:

e−ikr cos(θ−θi ) =
∑
m∈Z

(−i)mJm (kr) eim(θ−θi ),

so the incident field may be written as

pi (r) =
∑
m∈Z

(−i)me−imθi︸ ︷︷ ︸
Am

Jm (kr) einθ.
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Application of the BC and solution of the problem

p(r) =
∑
m∈Z
AmJm(kr)eimθ +

∑
n∈Z
BnH(1)

n (kr)e inθ.

The normal derivative with respect of r reads as

∂p(r)

∂r
=
∑
m∈Z

kAmJ̇m(kr)eimθ +
∑
n∈Z

kBnḢ
(1)

n (kr)einθ,

where χ̇n(x) = ∂χn(x)/∂x = (χn−1(x)− χn+1(x)) /2.

Introducing α = kR and making use of

∫ 2π

0

ei(n−m)θdθ = 2πδnm after

projection R×︸︷︷︸
optional

∫ 2π

0

∂p(r)

∂r

∣∣∣∣
r=R

e−ilθdθ = 0, we get:

Bn = − J̇n(α)

Ḣ
(1)

n (α)
An = SCn︸︷︷︸

Scattering coefficient

An,

and finally p(r) =
∑
n∈Z
An

(
Jn(kr) + SCnH(1)

n (kr)
)

einθ.
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Penetrable scactterers

when the cylindrical scatterer is penetrable (fluid), the pressure field
in Ω[1] reads as (Rayleigh hyposthesis):

p[1](r) =
∑
m∈Z
CmJn(kr)einθeinθ.

Application of the BC

(
after projection

∫ 2π

0

·e−ilθdθ

)
leads to

Bn =
β[1]J̇n(α[1])Jn(α[0])− β[0]J̇n(α[0])Jn(α[1])

β[0]Ḣ
(1)

n (α[0])Jn(α[1])− β[1]H(1)
n (α[0])J̇n(α[1])

An = SCnAn,

where α[j] = k [j]R, β[j] = α[j]/ρ[j], j = 0, 1.

Remark: the low frequency approximation reads as
(
O
(
α[0]
)2
)

:

SC0 ≈
iπ
(
α[0]
)2

4

(
1− K [0]

K [1]

)
, SC±1 ≈

iπ
(
α[0]
)2

4

ρ[1] − ρ[0]

ρ[0] + ρ[1]
.

at low frequency, split ring or Helmholtz resonators leads to full
scattering matrices Krynkin et al., J. Phys. D: Appl. Phys., 2011.
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Scattering of a cylindrical incident wave by a rigid cylinder

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (rs) =
i

4
H

(1)
0 (krs).

Boundary conditions:
∂p[0]

∂r

∣∣∣∣
r=R

= 0.

Notation:

superscript indicates the object

subscript indicates the object the coordinate system is attached to

The pressure field in Ω[0] takes the following form

p(r) =
i

4
H

(1)
0 (krs)︸ ︷︷ ︸

Coordinate system attached to the source

+

Coordinate system attached to the cylinder︷ ︸︸ ︷∑
n∈Z
BnH(1)

n (kr)einθ.
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Graf’s addition theorem Abramowitz & Stegun, 1964

H(1)
n (kr2)einθ2 =


∑
q∈Z

ei(n−q)θ2
1 H

(1)
q−n(kr 2

1 )Jq(kr1)eiqθ1 , if r1 < r 2
1∑

q∈Z
ei(n−q)θ2

1 Jq−n(kr 2
1 )H(1)

q (kr1)eiqθ2 , if r1 > r 2
1

Remark: may also be found with θ2′

1 = θ2
1 + π.
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Solution of the scattering problem

Applying the Graf’s theorem, we end with

pi (r) =



∑
n∈Z

i

4
e−inθs

Jn(kr s)H(1)
n (kr)e inθ , for r > r s ,∑

n∈Z

i

4
e−inθs

H(1)
n (kr s)︸ ︷︷ ︸

An

Jn(kr)einθ , for r < r s ,

so the problem reads as

p(r) =
∑
n∈Z

(
AnJn(kr) + BnH(1)

n (kr)
)

einθ, for r < r s .

Or, we show previously that

Bn = − J̇n(α)

Ḣ
(1)

n (α)
An = SCnAn.

p(r) =
i

4
H

(1)
0 (krs) +

∑
n∈Z
SCnAnH(1)

n (kr)einθ.
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Scattering by a N cylinders
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Scattering of a plane incident wave by 2 rigid cylinders

Boundary conditions:
∂p[0]

∂r

∣∣∣∣
r1=R(1)

= 0,

∂p[0]

∂r

∣∣∣∣
r2=R(2)

= 0.

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (r) = eik i
1x1−ik i

2x2 , with k i
1 = −k cos

(
θi
)

and

k i
2 =

√
k2 − (k i

1)2, with Re(k i
2) ≥ 0.
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Scattering of a plane incident wave by 2 rigid cylinders

Boundary conditions:
∂p[0]

∂r

∣∣∣∣
r1=R(1)

= 0,

∂p[0]

∂r

∣∣∣∣
r2=R(2)

= 0.

The pressure field in Ω[0] takes the following form

p(r) =
∑
m∈Z

(−i)mJm (kr) eim(θ−θi )

︸ ︷︷ ︸
Global coordinate system

+

Coordinate system C1︷ ︸︸ ︷∑
n∈Z
B(1)

n H(1)
n (kr1)einθ1 +

∑
q∈Z
B(2)

q H(1)
q (kr2)eiqθ2

︸ ︷︷ ︸
Coordinate system C2

.
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Expression of the field in C1

p(r) =

pi (r)︷ ︸︸ ︷
eik i

1x1−ik i
2x2 +

p
(1)
scat (r1)︷ ︸︸ ︷∑

n∈Z
B(1)

n H(1)
n (kr2)einθ2 +

p
(2)
scat (r2)︷ ︸︸ ︷∑

q∈Z
B(2)

q H(1)
q (kr2)eiqθ2 .

Incident field

pi (r) = eiki ·r

= eiki ·(r1+r1)

= eiki r1

× eiki ·r1︸ ︷︷ ︸
Cylinder 1

= e−ik i r 1 cos(θ1−θi ) ×
∑
n∈Z

(−i)nJn (kr1) ein(θ1−θi )

=
∑
n∈Z
A1i

n Jn (kr1) einθ1 .
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Expression of the field in C1

p(r) =

pi (r)︷ ︸︸ ︷
eik i

1x1−ik i
2x2 +

p
(1)
scat (r1)︷ ︸︸ ︷∑

n∈Z
B(1)

n H(1)
n (kr2)einθ2 +

p
(2)
scat (r2)︷ ︸︸ ︷∑

q∈Z
B(2)

q H(1)
q (kr2)eiqθ2 .

Scattered field by the cylinder 2
Graf’s theorem, for r1 < r 2

1 −R(2):

H(1)
q (kr2)eiqθ2 =∑

n∈Z
ei(q−n)θ2

1 H
(1)
n−q(kr 2

1 )Jn(kr1)einθ1 ,

so we got,

p
(2)
scat(r1) =

∑
n∈Z

∑
q∈Z
B(2)

q ei(q−n)θ2
1 H

(1)
n−q(kr 2

1 )Jn(kr1)einθ1 , for r1 < r 2
1−R(2).
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Expression of the field in C1, for r1 < r 2
1 − R (2)

p(r1) =
∑
n∈Z
A1i

n Jn (kr1) einθ1

}
Incident field

+
∑
n∈Z

∑
q∈Z
B(2)

q ei(q−n)θ2
1 H

(1)
n−q(kr 2

1 )Jn(kr1)einθ1

 Scattered field by 2

+
∑
n∈Z
B(1)

n H(1)
n (kr1)einθ1

}
Scattered field by 1

Keeping in mind that

∫ 2π

0

ei(n−m)θdθ = 2πδnm, this field may be written as

p(r1) =
∑
n∈Z

( A(1)
n︷ ︸︸ ︷[

A1i
n +
∑
q∈Z
B(2)

q ei(q−n)θ2
1 H

(1)
n−q(kr 2

1 )
]

Jn(kr1) +B(1)
n H(1)

n (kr1)

)
einθ1 .
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Solution of the problem

Once again, we have

B(1)
n = − J̇n(α1)

Ḣ
(1)

n (α1)
A1

n = SC1
nA1

n

= SC1
n

A1i
n +
∑
q∈Z
B(2)

q ei(q−n)θ2
1 H

(1)
n−q(kr 2

1 )

 ,

which may be written in matrix form

B1 = A1 + C2
1B2.

Similarly, we can express the field in C2 for r2 < r 1
2 − R(1) and we get:

B2 = A2 + C1
2B1.

Finally, the final system reads as:

[
Id −C2

1

−C1
2 Id

] [
B1

B2

]
=

[
A1

A2

]
.
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Warning! Take care with field representation domains

For the solution of the problem we experessed the fields in both
r1 < r 2

1 − R(2) and r2 < r 2
1 − R(1), but we should keep in mind that

p(r) =
∑
n∈Z

(−i)nJn (kr) ein(θ−θi )+B(1)
n H(1)

n (kr1)einθ1 +B(2)
n H(1)

n (kr2)einθ2 , ∀r ∈ Ω[0].
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Scattering of a plane incident wave by N cylinders

Boundary conditions:
∂p[0]

∂rj

∣∣∣∣
rj =R(j)

= 0, j ∈ J

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (r) = eik i
1x1−ik i

2x2 , with k i
1 = −k cos

(
θi
)

and

k i
2 =

√
k2 − (k i

1)2, with Re(k i
2) ≥ 0.
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Scattering of a plane incident wave by N cylinders

Boundary conditions:
∂p[0]

∂rj

∣∣∣∣
rj =R(j)

= 0, j ∈ J

The pressure field in Ω[0] takes the following form

p(r) =
∑
n∈Z

(−i)nJn (kr) ein(θ−θi )

︸ ︷︷ ︸
Global coordinate system

+
∑
j∈J

p
(j)
scat︷ ︸︸ ︷∑

n∈Z
B(j)

n H(1)
n (krj )einθj .
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Solution of the problem

Express the field around each j-th cylinder ∀rj < mino 6=j

(
r o
j − R(o)

)
p(rj ) =

∑
n∈Z

( A(j)
n︷ ︸︸ ︷[

Aji
n +

∑
o∈J 6=j

∑
q∈Z
B(o)

q ei(q−n)θo
j H

(1)
n−q(kr o

j )
]

Jn(krj )+B(1)
n H(1)

n (krj )

)
einθj .

Apply the BC on the j-th cylinder

B(j)
n = SCj

n

(
Aji

n +
∑

o∈J 6=j

∑
q∈Z
B(o)

q ei(q−n)θo
j H

(1)
n−q(kr o

j )

)
.

Final system for the solution of B(j)
n , ∀n ∈ Z and ∀j ∈ J



Id −C2
1 · · · −CJ−1

1 −CJ
1

−C1
2 Id · · · −CJ−1

2 −CJ
2

· · · · · · ·
· · · · · · ·
· · · · · · ·

−C1
J−1 −C2

J−1 · · · Id −CJ
J−1

−C1
J −C2

J · · · −CJ−1
J Id





B1

B2

·
·
·
BJ−1

BJ


=



A1

A2

·
·
·
AJ−1

AJ


.
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Comments

Replacing the expression of Aji
n by Aji

n =
i

4
e−inθs

j H(1)
n (kr s

j ), enable

the calculation of Bj , j ∈ J when the configuration is excited by a
line source.
In other words, you calculate the Green’s function of the system!

⇒ usefull to calculate the density of state Asatryan et al., Waves
Random Media, 2003
⇒ usefull to solve inverse problem Groby and Lesselier et al., J. Opt. Soc.
Am. A, 2008

Sum are truncated in practice and reads
M∑

m=−M

, with

M = int
(

4.05(kR)1/3 + kR
)

+ security coefficient︸ ︷︷ ︸
=10

,

Barber and Hill, 1990
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Example: 77 element finite dimension sonic crystal
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We should use the pointing vector instead of the pressure field.
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Part III. Scattering by a periodic
arrangement of circular cylinders

Scattering of a plane incident by an array of
rigid cylinders

Reflection and transmission coefficients by an
array of rigid cylinders

Reflection and Transmission coefficients by a
stack of gratings

Band diagram calculation
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Scattering of a plane incident by an array of rigid
cylinders
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Scattering by an array of rigid cylinders

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (r) = eik i
1x1−ik i

2x2 , with k i
1 = −k cos

(
θi
)

and

k i
2 =

√
k2 − (k i

1)2, with Re(k i
2) ≥ 0.
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Scattering by an array of rigid cylinders

Boundary conditions:
∂p[0]

∂r

∣∣∣∣
r=R

= 0.

The field is quasi-periodic (Floquet-Bloch condition):

p[0](x1 + nd , x2) = p[0](x1, x2)eik i
1nd , ∀x ∈ R2 and ∀n ∈ Z.

⇒ It is sufficient to determine the field in the unit cell C.
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Scattering by an array of rigid cylinders

The pressure field in Ω[0] takes the following form

p[0](r) =
∑
n∈Z

(−i)nJn (kr) ein(θ−θi ) +
∑
j∈Z

p
(j)
scat︷ ︸︸ ︷∑

n∈Z
B(j)

n H(1)
n (krj )einθj .

The periodicity implies

B(j)
n = B(0)

n eijk i
1d .
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Scattered field in C0

The scattered field may be written in the form

p
[0]
scat(r) =

∑
j∈Z

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj

=
∑
n∈Z
B(0)

n H(1)
n (kr0)einθ0

+
∑
j<0

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj +
∑
j>0

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj .

Applying the Graf’s theorem (r0 < d − R) leads to

H(1)
n (krj )einθj =


∑
q∈Z

(−1)n−qH
(1)
q−n(k |j |d)Jq(kr0)eiqθ0 , for j < 0,∑

q∈Z
H

(1)
q−n(kjd)Jq(kr0)eiqθ0 , for j > 0.

38 / 62 J.-P. Groby Multiple Scattering Theory



Scattered field in C0

The scattered field may be written in the form

p
[0]
scat(r) =

∑
j∈Z

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj

=
∑
n∈Z
B(0)

n H(1)
n (kr0)einθ0

+
∑
j<0

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj +
∑
j>0

∑
n∈Z
B(0)

n eijk i
1d H(1)

n (krj )einθj .

For (r0 < d − R)
⋃

unit cell

p
[0]
scat(r) =

∑
n∈Z
B(0)

n H(1)
n (kr0)einθ0

+
∑
n∈Z

∑
q∈Z
B(0)

q

∑
j>0

H
(1)
n−q(kjd)

(
eijk i

1d + (−1)n−qe−ijk i
1d
)

︸ ︷︷ ︸
Schlömilch serie

Jn(kr0)einθ0
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Comments on the Schlömilch serie

The serie:
Sn =

∑
j>0

H(1)
n (kjd)

(
eijk i

1d + (−1)ne−ijk i
1d
)

is known to be slowly converging in absence of losses.
A large litterature exists on the numerical evaluation of this serie

V. Twersky, Elementary function representations of Schlömilch
series, Arch. Ration. Mech. An., 8(1):323-332, 1961

C.M. Linton, Schlömilch series that arise in diffraction theory and
their efficient computation, J. Phys. A. : Math. Gen., 39:3325-3339,
2006

R.C. McPhedran, N.A. Nicorovici, and L.C. Botten, Schlömilch series
and grating sums, J. Phys. A. : Math. Gen., 38 :8353-8366, 2005.

...
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Solution of the scattering problem

The incident field reads as

pi (r0) = e−ik i r 0 cos(θ0−θi )×
∑
n∈Z

(−i)nJn (kr0) ein(θ0−θi ) =
∑
n∈Z
A0i

n Jn (kr0) einθ0 ,

so we end with
p[0](r) =

∑
n∈Z

(
B(0)

n H(1)
n (kr0) +

(∑
q∈Z
B(0)

q Sn−q +A0i
n︸ ︷︷ ︸

An

)
Jn(kr0)

)
einθ0 .

Once again, we have

B(1)
n = SC1

n

(
A0i

n +
∑
q∈Z
B(0)

q Sn−q

)
,

which may be written in matrix form

[Id− S] B0 = A0.

p[0](r) =
∑
n∈Z

(−i)nJn (kr) ein(θ−θi ) +
∑
j∈Z

∑
n∈Z
B(j)

n H(1)
n (krj )einθj .

We do not really use the reciprocal space and Bloch waves!
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Reflection and Transmission coefficients by an array
of rigid cylinders

41 / 62 J.-P. Groby Multiple Scattering Theory



Scattering by an array of rigid cylinders

Look for Rq and Tq

p[0]+ =
∑
q∈Z

δq0e ik1qx1−ik2q(x2−L) + Rqe ik1qx1+ik2q(x2−L),

p[0]− =
∑
q∈Z

Tqe ik1qx1−ik2qx2 ,

where k1q = k i
1 + 2πq

d , k2q =
√

k2 − k2
1q, with Re (k2q) ≥ 0.

Warning: A0i
n ← A0i

n e ik2L.
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Periodic Green’s function

{
(∇+ k2)G(x, xs) = −δx s

1 +jd,x s
2
, j ∈ Z

+
G(x, xs) ∼ outgoing waves when x2 →∞,

G(x, xs) =
∑
j∈Z

i

4π

∫ ∞
−∞

e ik1(x1−x s
1−jd)+ik2|x2−x s

2 | dk1

k2
,

with k2 =
√

k2 − k2
1 and Re (k2) ≥ 0, with k1j = 2πj

d .

Using the Poisson formula
∞∑

j=−∞

e−ik1jd =
2π

d

∞∑
j=−∞

δk1q , we get

G(x, xs) =
∑
j∈Z

i

2d

e ik1q(x1−x s
1 )+ik2q|x2−x s

2 |

k2q
.
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Scattered field by the grating

From the Green’s theorem we have

p[0](r) =

∫
D

(
p[0](rs)

∂G(r, rs)

∂r s
−G(r, rs)

∂p[0](rs)

∂r s

)
dD.

Using p[0](rs) =
∑
n∈Z

(
B(0)

q H(1)
n (kR) +

∑
q∈Z
B(0)

q Sn−qJn(kR)

)
einθ0 ,

orthogonality of einθ, and Wronskian identity, we end with

p[0]±′
(x) =

∑
q∈Z

∑
n∈Z
B(0)

n K±qne−ik1qx0
1∓ik2qx0

2 e ik1qx1±ik2qx2 ,

with K±qn =
2(−i)n

dk2q
e±inθq ,

where ke iθq = k1q + ik2q.
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Identification of Rq and Tq

We have p[0]+′
(x) =

∑
q∈Z

∑
n∈Z
B(0)

n K +
qne−ik1qx0

1−ik2qx0
2 e ik1qx1+ik2qx2 , for x2 > x0

2 + R,

p
[0]+
refl (x) =

∑
q∈Z

Rqe ik1qx1+ik2q(x2−L), for x2 ≥ L > x0
2 + R.

Making use of

∫ d

0

e i(k1q−k1m)x1 dx1 = 2πdδqm, we end with

Rq =
∑
n∈Z
B(0)

n K +
qne−ik1qx0

1−ik2q(x0
2−L).

On the other hand we have
p[0]−′

(x)−pi (x) =
∑
q∈Z

∑
n∈Z
B(0)

n K−qne−ik1qx0
1 +ik2qx0

2 e ik1qx1−ik2qx2 , for x2 < x0
2 − R,

p[0]−(x) =
∑
q∈Z

Tqe ik1qx1−ik2qx2 , for x2 ≤ 0 < x0
2 − R.

Making use of the orthogonality of the Bloch waves, we end with

Tq =
∑
n∈Z
B(0)

n K−qne−ik1qx0
1 +ik2qx0

2 + δq0e ik2qL.
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Summary of the field representations

Field representation in cartesian coordinates in Ω[0]±

Field representation in cylindrical coordinates in ΩC0

For large radius cylinders, we should run the sum in the direct
spatial domain in the red regions...
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Evidence of the Wood anomaly (Wood, Phil. Mag. J. Sci., 1902)

Far below the possible resonance of the scatterers, both Rq and Tq

present a pole when k2q = 0.
In particular, when k21 = 0, i.e., k i

1 ± 2π
d = k , all the energy is spread

along the grating (at normal incidence λ = d) and α = 1.

This has led several authors to study propagation of this type of
guided/surface waves Porter and Evans, J. Fluid Mech., 1999
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Reflection and Transmission by a stack of gratings
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Scattering by a stack of array of rigid cylinders

Look for p[0](r), ∀r ∈ Ω[0],{
(∇+ k2)p[0](r) = 0,
+
p[0](r)− pi (r) ∼ outgoing waves,

wherein pi (r) = eik i
1x1−ik i

2x2 , with k i
1 = −k cos

(
θi
)

and

k i
2 =

√
k2 − (k i

1)2, with Re(k i
2) ≥ 0.
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Scattering by a stack of array of rigid cylinders

Boundary conditions:
∂p[0]

∂r

∣∣∣∣
r=R

= 0.

The field is quasi-periodic (Floquet-Bloch condition):

p[0](x1 + nd , x2) = p[0](x1, x2)eik i
1nd , ∀x ∈ R2 and ∀n ∈ Z.

⇒ It is sufficient to determine the field in the unit cell C.
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Scattering by a stack of array of rigid cylinders

It exist several ways to solve this problem

Scattering Matrix: large litterature notably by the group Mc
Phedran and L. Botten

Transfert Matrix

Considering the unit cell as a kind of supercell
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Scattering by a stack of array of rigid cylinders

Look for Rq and Tq

p[0]+ =
∑
q∈Z

δq0e ik1qx1−ik2q(x2−L) + Rqe ik1qx1+ik2q(x2−L), ∀x ∈ Ω[0]+,

p[0]− =
∑
q∈Z

Tqe ik1qx1−ik2qx2 , ∀x ∈ Ω[0]−,

p[1] =
∑
q∈Z

(
f +
q e ik2qx2 + f −q e ik2qx2

)
e ik1qx1 +

∑
j∈Z

∑
n∈Z
B(j)

n H(1)
n (krj )einθj ,

where k1q = k i
1 + 2πq

d , k2q =
√

k2 − k2
1q, with Re (k2q) ≥ 0.
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Solution of the scattering problem

Application of the BC on Γ±

Rq =
∑
j∈J

B(j)
n K +

qne−ik1qx0
1−ik2q(x0

2−L)

Tq =
∑
j∈J

B(j)
n K−qne−ik1qx0

1 +ik2q(x0
2−L) + e ik2qLδq

f +
q = 0, and f −q = e ik2qLδq

Application of the BC on the cylinders

p
[1]
inc (rj) = e−ik2q(x2+L)δq+∑

o>j

∑
q∈Z

∑
n∈Z
B(o)

n K +
qne ik1q(x1−xo

1 )+ik2q(x1−xo
2 )+

∑
o<j

∑
q∈Z

∑
n∈Z
B(o)

n K−qne ik1q(x1−x0
1 )−ik2q(x2−x0

2 ).
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Solution of the scattering problem

Application of the BC on Γ±

Rq =
∑
j∈J

B(j)
n K +

qne−ik1qx0
1−ik2q(x0

2−L)

Tq =
∑
j∈J

B(j)
n K−qne−ik1qx0

1 +ik2q(x0
2−L) + e ik2qLδq

f +
q = 0, and f −q = e ik2qLδq

Application of the BC on the cylinders

change of coordinate system
x̃h = xh − x j

h, h = 1, 2

coordinate type: cartesian →
cylindrical

eik1q x̃1±ik1q x̃2 =
∑
n∈Z

J±qnJn (kj ) e
inθj ,

where J±qn = (i)me∓iθq .
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Final system

Formaly the pressure field for mino 6=j

(
r o
j − R(o)

)
reads as

p[0](r) =
∑
n∈Z

(
B(0)

n H(1)
n (kr0) +

(∑
l∈Z

B(j)
l S

j
n−q +

∑
o 6=j

∑
l∈Z

B(o)
l S

(o,j)
n,l +A0i

n︸ ︷︷ ︸
An

)
Jn(kr0)

)
einθ0 ,

and we may apply again the realtion Bj
n = SCj

nAn.

In this case S(o,j)
n,l =

∑
q∈Z

2(−i)n−le±i(n−l)θq

dk2q
e ik1q (x

j
1−xo

1 )±ik2q (x
j
2−xo

2 ), (+ : x j
2 > xo

2 ).

More complete expression may be found in Groby et al., J.Acoust.Soc.Am., 11
Final system for the solution of B(j)

n , ∀n ∈ Z and ∀j ∈ J



Id− S −S2
1 · · · −SJ−1

1 −SJ
1

−S1
2 Id− S · · · −SJ−1

2 −SJ
2

· · · · · · ·
· · · · · · ·
· · · · · · ·

−S1
J−1 −S2

J−1 · · · Id− S −SJ
J−1

−S1
J −S2

J · · · −SJ−1
J Id− S





B1

B2

·
·
·
BJ−1

BJ


=



A1

A2

·
·
·
AJ−1

AJ


.
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Example: 7 rows sonic crystal of inifinte latteral extend
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Fabry-Perot interferences

52 / 62 J.-P. Groby Multiple Scattering Theory



Band diagram calculation
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Various methods

Plane Wave Expansion (as presented previously by J. Vasseur)
⇒ easy to use (eigenvalue problem)
⇒ limited to lossless cases and a single type of material per unit cell

Extended Plane Wave Expension
⇒ easy to use (eigenvalue problem)
⇒ single type of material per unit cell

Method based on the Multiple Scattering Theory

Scattering Matrix: Botten et al., Phys. Rev. E, 64:046603, 2001
⇒ implicit in term of Bloch wave
2D periodic Green’s function: Poulton et al., Proc. R. Soc. Lond. A,
456:2543-2559, 2000
⇒ implicit in term of Bloch wave
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Obtention of the eigenvalue problem

We have

pu =
∑
q∈Z

(
a−uqe−ik2q(x2−L) + a+

uqe ik2q(x2−L)
)

e ik1qx1

pd =
∑
q∈Z

(
a+

dqe ik2qx2 + a−dqe−ik2qx2

)
e ik1qx1

The terms a±uq and a±dq may be arranged in a±u and a±d .
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Obtention of the eigenvalue problem

Because of the orthogonality of the Bloch waves, we write:[
a+

u

a−u

]
= e ik2B L

[
a+

d

a−d

]
,

where k2B is the projection of the Bloch wave number kB along x2, such

that kB =
√

(k i
1)2 + k2

2B .
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Obtention of the eigenvalue problem

RQ
q and T Q

q might be calculated when the array is solicited by the Q-th
Bloch wave. Therefore, we may construct a matrices R and T, and we
have, again thanks to the orthogonality of the Bloch waves:[

a+
u

a−u

]
=

[
T R
0 Id

] [
a+

d

a−u

]
and

[
a+

d

a−d

]
=

[
Id 0
R T

] [
a+

d

a−u

]
.

So, we end with the following eigenvalue problem[
Id 0
R T

]−1 [
T R
0 Id

] [
a+

d

a−u

]
= e ik2B L

[
a+

d

a−u

]
.
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Example of band diagram
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Along ΓX , k i
1 = 0.

⇒ Multiple Scattering might also be used to calculate band diagram
⇒ EquiFrequency Surface: might be complicated along the XM direction
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Conclusion

Multiple Scattering Theory is an efficient tool for

calculating the response of finite dimension sonic crystals,
calculating the response of finite depth sonic crystals.

Multiple Scattering Theory might also be used for band diagram
calculation

Multiple Scattering Theory might also be used in

phononic crystals
metaporous materials
vibroacoustics
...

Multiple Scattering Theory is efficient for cylindrical (ovaidal) shape
scatterers
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You have to take care of the losses!

R = 1 mm and φ = 0.5, Duclos et al., EPJAP, 2009
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Comments on the longwavelength limit

In the longwavelength limit λ >> d , the
viscothermal problem reduces to

iω

 ρ‖ 0 0
0 ρ⊥ 0
0 0 ρ⊥

 · V = ∇p,

iωp = K∇ · V,

where (Johnson-Lafarge model)
ρj =

α∞j

φ

(
1 +

1

iω̃j

√
1 + iω̃j

Mj

2

)
, with j =⊥, ‖,

K =
γP0

φ

(
γ − (γ − 1)

[
1 +

1

iω̃′

√
1 + iω̃′

M ′

2

]) ,

with M ′ =
8k ′0
φΛ′2

, ω′ =
ωk ′0
ν′φ

, Mj =
8α∞j k0j

φΛ2
j

, ω′ =
ωk0jα∞j

νφ
, j =⊥, ‖.
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Comments on the longwavelength limit

In the longwavelength limit λ >> d , the
viscothermal problem reduces to

iω

 ρ‖ 0 0
0 ρ⊥ 0
0 0 ρ⊥

 · V = ∇p,

iωp = K∇ · V,

where (Johnson-Lafarge model)

φ =
πR2

d2
, Λ′ =

Rφ

1− φ
, k ′0 = R2−2log (1− φ)− 2φ− φ2

8(1− φ)
,

α∞⊥ = 2− φ, Λ⊥ = R
φ(2− φ)

2(1− φ)
, k0⊥ = R2−2log (1− φ)− 2φ− φ2

16(1− φ)
,

α∞‖ = 1, Λ‖ = Λ′, k0‖ = k ′0,

for dilute arrangement (φ > 0.5) Tarnow, J. Acoust. Soc. Am., 1997.
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DENORMS Action (CA 15125)

DENORMS (Designs for Noise Reducing Materials and Structures) aims at designing
multifunctional, light and compact noise reducing treatments, which will be used in realistic
environments.

DENORMS brings together skills and knowledge of
the complementary communities of scientists working
on acoustic metamaterials, sonic crystals and
conventional acoustic materials across Europe and
overseas.
⇒ 3 interacting Working Groups (WG)

WG1. Modelling of sound interaction with noise
reducing materials and structures

WG2. Experimental techniques

WG3. Industrial applications
DENORMS currently gathers

Laboratories and Industrial partners from
27 Participating countries and 1 (4)

International Parner Country.
⇒ DENORMS Activities for 2017-2018

Workshop Brainstorming , Novi-Sad, 14-15th Sept 2017.
Training School Experiments on porous materials and acoustic metamaterials, Le Mans,
4th-6th Dec. 2017
Workshop Experimental techniques in porous materials and acoustic metamaterials, Leuven,
7th-9th Feb 2018

Further information on
https://denorms.eu/
Contact denorms@univ-lemans.fr
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Thank you for your attention.

Any questions?
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