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Past	300	years



 
Phononics	and	acoustic	metamaterials:	  

The	past	25	years

Spectral	Properties	(ω-space)	
Exploitation	of	partial/complete	band	gaps	

Stop	bands	→	insulators	to	acoustic/elastic	waves	
Narrow	pass	bands	→	frequency	filtering	
Defected	structures	→	wave-guiding	&	mode-localization	

Wave	Vector	Properties	(k-space)	
Negative	Refraction	

Flat	lenses	→	Focusing	&	Sub-wavelength	imaging	

Zero-angle	Refraction	
Collimation		



 

Spectral	gaps



Steel cylindrical inclusions in 
fluids (methanol)

 

Wave	vector  
domain



Phase	Domain		  
symmetry	breaking  

and	Topology



Symmetry	breaking	of	elastic	and		
acoustic	waves	equation

• Time-reversal	symmetry	

• Parity	symmetry	

• Chiral	symmetry	

• Particle-hole	symmetry

	

	

	

	
Conventional	1D	wave	equation:





Quantum-analogue phononic 
systems

 

Intrinsic approach to symmetry breaking



Intrinsic	phononic	structure

Relativistic quantum 
mechanics 

Klein-Gordon Equation

	



Other	examples	of	physical	systems



	

	

Some	matrix	algebra









Pseudospin	φ-bit

	

	

	

An	analogue	to	qubits	necessary	for	quantum	computing



The Phi-Bit
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Elastic	Pseudospin
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Pseudospin	φ-bit

	 	
	

	

1-D	Elastic	wave	
equation	with	
graded	
properties

Webster	
equation

	
	

	

Generalized	
Klein-Gordon	
equation

	
	 	withRelativistic	

Klein-Gordon	
equation

	1-D	Dirac	
equation

	

	
	
	

1Plane	wave	
solutions

	

	

	

	

Making	the	quantum	analogue

20



Observables

	 	

	

	

	

	

Number	operator Direction	switching	operators	 Direction	occupancy	

“Amount”	of	traveling	wave	
character	of	the	wave	function	

		
Transmission	coefficient	
is	measurable

	
In	contrast	with	quantum	superposition,	an	elastic	superposition	of	
states	

For	frequencies	100kHz	to	
1MHz	wavelength	is	cm	to	
mm	which	is	significantly	
larger	than	possible	defect	
scattering	length:	
Signal	to	noise	ratio	~	10+3.
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is	measurable	directly	through	the	transmission	coefficient,	
without	need	for	wave	function	collapse.	



Physical	realization	and	operation	of	a	φ-bit		 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elastic	waveguide
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Near	band	gap	Ti-Sapphire	laser	radiation	
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Qubit	vs	φ-bit	Deutsch-Jozsa	algorithm
Deutsch-Jozsa	Objective:	Determine	if	the	function

	 is	constant	or	balanced.		

Hadamard	gate	applied	a	second	time	to	‘collapse’	the	wavefunction.

No	second	Hadamard	gate	is	needed,	the	superposition	of	states	is	read	directly.
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Single	φ-bit	Deutsch-Jozsa	algorithm
		

Hadamard,	H,	gate

	
S(x
)	gr

adi
ng

T~1
T~0

	

	

T~0

	
T~0

Oracle

Step	1:	Apply	Hadamard	gate Step	2:	Oracle	unitary	transformation

is	constant		
is	balanced		

	

	

Step	3:	Measure	superposition	of	states

	

H Uf
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Non-separable	superposition	of	states	in	parallel	φ-bit	arrays  

• 	
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The	power	of	exponential	complexity

• Two	non-separable	φ-bits	1	and	2	support	22	“bits.”	
• Affecting	the	state	of	subsystem	1	in	a	non-separable	superposition	of	states	
impacts	the	state	of	subsystem	2,	thus	operating	on	the	22	“bits.”	

• N	non-separable	φ-bits	support	2N	“bits.”	
• Operating	on	any	subsystem	in	a	non-separable	superposition	operates	on	
the	2N	“bits.”	

• Hence,	arrays	of	φ-bits	in	non-separable	states	offer	massively	parallel	
processing	of	phonons.	For	example,	an	array	of	N=50	φ-bits,	which	is	easily	
technologically	realizable,	has	a	parallel	computing	capacity	of	250	or	~1x1015	
bits	(Petascale).
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Elastic	waves	in	non-separable	states

Example:	two	φ-bits,	“a”	and	“b,”	coupled	in	parallel	through	an	elastic	medium.		
Elastic	displacements	are	“u”	and	“v”.

	Coupled	1-D	
Elastic	Klein-
Gordon	wave	
equations

	1-D	Elastic	Dirac	
equation

	

	
4x1	spinorial	
plane	wave	
solutions

	

:	:	coupling	terms
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Elastic	waves	in	non-separable	states	(continues)

	
4x1	spinorial	
plane	wave	
solutions

	Antisymmetric	
solutions

	

	

Elastically	coupled	φ-bits		

Uncoupled	φ-bits		

	
Individual	φ-bit	solutions	

But	for	special	cases		
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N	coupled	φ-bits	

	

Nx1	non-separable	spinorial	plane	wave	solutions

	

Multi-pseudospin	
superpositions	of	φ-bit	
states	are	experimentally	
measurable	from	the	
transmission	coefficients	of	
individual	fibers	
constituting	the	array.	
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Deutsch-Jozsa	algorithm	with	entanglement	

Given	a	function	f,	how	
does	one	decide	
whether	it	is	even	or	
odd,	without	computing	
the	function	at	all	input	
points?

arXiv:	quant-ph/0006069v1
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Deutsch-Jozsa	algorithm	with	entanglement	
(2)

	 	 ψH
Uf

	 H 	

For	an	“even”	function,	the	final	state	is	separable	
For	an	“odd”	function,	the	final	state	is	non-separable	(entangled)

Note:	No	unambiguous	single	measurement	of	entangled	states	of	quantum	systems	(needs	multiple	measurement	and	statistics)

31



Deutsch-Jozsa	algorithm	with	entanglement	
(3)

For	an	“even”	function,	the	final	state	is	separable	
For	an	“odd”	function,	the	final	state	is	non-separable	(entangled)
Two	elastically	coupled	φ-bits		 	

	

	
	

	
otherwise

separable

separable

entangled

	

Single	
measurement	of	
transmission		
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Design of Elastic Band Structures 
with Broken Symmetry via Spatio-
Temporal Modulations of Elasticity 

 

Extrinsic approach to symmetry breaking



Non-reciprocal	elastic	wave	propagation
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Photo-elastic	effect

	J.	Gump,	I.	Finckler,	H.	Xia,	R.	Sooryakumar,	W.	J.	Bresser,	and	P.	Boolchand,	“Light-induced	
giant	softening	of	network	glasses	observed	near	the	mean-field	rigidity	transition,”	Phys.	Rev.	
Lett.	92,	245501	(2004).



 

Elastic	writable	superlattice 
	  

Position, n

L=100a

(xL)

n n+1n-1β(1)

m
a

Chalcogenide	glass	elastic	waveguide



Spectral	Energy	Density	(SED)	method

	

	



 

Elastic	dynamically	rewritable	superlattice	 
	  

(xL) (xL)

V=350m/sec V=0m/sec



 

Understanding	dynamically	rewritable	superlattices

V=350m/sec

L=100a



Topology



 

Non-reciprocity	of	elastic	wave	propagation



 

Immunity	to	backscattering	by	defects



 

Hybridization	gaps

A’
A

B’

B

(a) (b)

n=1
n=2

n=0

	

Brillouin	scattering	
Stokes	and	anti-Stokes	
modes



Introduction	to	multiple	time	scale	
perturbation	theory
	

	

	

	

	

	

	



Introduction	to	multiple	time	scale	
perturbation	theory	(2)

	

	

	

	



Introduction	to	multiple	time	scale	
perturbation	theory	(3)

	



Introduction	to	multiple	time	scale	
perturbation	theory	(4)

	



 

Elastic	wave	equation

	

1D	elastic	wave	equation	with	spatio-temporal	variation	in	stiffness

	with

	 	
Seek	solution	in	the	form	of	Bloch	waves

	
1D	elastic	wave	equation	in	wave	number	space	becomes

	and



 

Multiple	time	scale	perturbation	theory

	

	

Expand	the	displacement	to	second	order	in	perturbation	ε

Define	three	time	scales

	

	

	

To	0th	order

To	1st	order

To	2nd	order



 

Perturbative	solutions	(0th	order)

	

	



 

Perturbative	solutions	(1st	order)

	

	

Brillouin	scattering	like	phenomenon



 

Perturbative	solutions	(2nd	order)
	

	

	

	
A
A’



 

Other	application	domains

1.	Extension	to	electromagnetic	waves	(Dynamical	
“microstructures”	of	index	of	refraction)	
2.	Extension	to	spin	waves	(Dynamical	“microstructures”	
of	exchange	coupling)	
3.	Extension	to	electronic	waves	(Dynamical	
“microstructure”	of	potential)	
4.	Extension	to	chemical	or	biological	waves	(Dynamical	
“microstructure”	of	diffusion	coefficient)



Calcium	waves



Breaking	symmetry	of	calcium	waves



Linear	model

	

	

	

	

with

the Ca2+ and IP3 waves perturbed by the acoustic 
wave is not symmetrical about the origin k=0. 



Need	for	nonlinear	model

Turing noted the importance of studying the behavior of biological processes by considering 
the complementarity of both linear and nonlinear dynamical systems: 

 “Such systems (with linear dynamics) certainly have a special interest as giving the 
appearance of a pattern, but they are the exception rather than the rule. Most of an organism, 
most of the time, is developing from one pattern into another, rather than from homogeneity 
into a pattern. One would like to be able to follow this more general process (nonlinear) 
mathematically also. The difficulties are, however, such that one cannot hope to have any 
very embracing theory of such processes, beyond the statement of the equations. It might be 
possible, however, to treat a few particular cases in detail with the aid of a digital computer.” 
(parenthetical comments added) 



Calcium	wave	dynamics

Without	sound



Symmetry	breaking	of	Calcium	wave	
propagation

Without	sound

With	sound
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