Topological acoustics

Pierre A. Deymier
Department of Materials Science and Engineering
University of Arizona

Tucson AZ 85721

NEW FRONTIERS OF SOUND

Collaborators

K. Runge ${ }^{1}$
P. Lucas ${ }^{1}$
V. Gole ${ }^{1}$
N. Swinteck ${ }^{1}$
S. Matsuo ${ }^{1}$
N. Jenkins ${ }^{1}$
J. O. Vasseur ${ }^{2}$
${ }^{1}$ Department of Materials Science and Engineering, University of Arizona, Tucson AZ 85721, USA
${ }^{2}$ Institut d'Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d'Ascq Cedex, France

PHILOSOPHIた
 NATURALIS
 PRINCIPIA

MATHEMATICA.

> AUCTORE

ISAACO NEWTONO, Ee Aur.
Editio tertia aucta \& emendata.
LONDINI:

Apud Guil. \& Joh. Insys, Regix Societatis typographos. MDCCXXVI.

PROPOSITIO XLIII. THEOREMA XXXIV.
Corpus onne tromulum in madio clastico propagabit motum pulsumm undique in dircutum; in medio vero non elastico motum circularem excitabit.

Phononics and acoustic metamaterials:
The past 25 years

$$
u(\vec{r}, t)=u_{0} e^{i \vec{k} \vec{r}} e^{i(\stackrel{\zeta}{\omega t+\varphi)}}
$$

Spectral Properties (ω-space)

Exploitation of partial/complete band gaps
Stop bands \rightarrow insulators to acoustic/elastic waves
Narrow pass bands \rightarrow frequency filtering
Defected structures \rightarrow wave-guiding \& mode-localization

Wave Vector Properties (k-space)

Negative Refraction
Flat lenses \rightarrow Focusing \& Sub-wavelength imaging
Zero-angle Refraction
Collimation

Spectral gaps

Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals

J.O. Vasseur, ${ }^{1, *}$ P. A. Deymier, ${ }^{2}$ B. Chenni, ${ }^{3}$ B. Djafari-Rouhani, ${ }^{1}$ L. Dobrzynski, ${ }^{1}$ and D. Prevost ${ }^{1}$ ${ }^{1}$ Labonatoire de Dynanique et Structares des Matériaucr Molécadaires, UPRESA CNRS 3024, UFR de Physiquec, Universite de Lille I, 5965 Villoseane d'Aseq Céder, France
${ }^{2}$ Department of Materials Science and Enginecring, University of Arigona, Tucson, Arisona 85721
${ }^{3}$ Laboratoire d'Acoustique Ulirasonore et d'Electronique, UPRESA CNRS 6068, Université da Havre, Phace Robert Schuonan, 76610 Le Havre Cider, Frunce

19. 1. Two-dimensional cross sections of the triaggular arnay of steel cylindess embedded in an eposy matrix: (a) Ab ${ }^{-1} J^{-}$sumple asd (b) the " Γx^{-}sample. The stoel cylinders, of circular cross sections. anv purathot to the Z axis of the Cartesias coordinate system ($0, X, Y, Z$). The lative parameter at is dotined as the distance between two neasest neightoring cyladers. The inset shows the irredacible Brillouis suee of the iniangular amay.

Redoued Wiene Vector
FIG.3. FWE merulls for the tont structury of the rave dimenional $X Y$ modes of vibration in the periodic triangular array of seel cylinders is an epoxy esin matrix for a filling fraction $f=0.4$. The redaced wave nector $\hat{k}\left(k_{\mathbf{r}}-k Y\right)$ is defiopd an $\tilde{K} a / 2=$ when \vec{K} is a twodimencional wave vection. The points $[, J$, and X are delined in the iniet of F. buand gaps are sepvescmted an huached areas.

THE UNIVERSITY OF ARIZONA

Wave vector domain

Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals

Veselago ${ }^{1}$ also predicted the unusual phenomenon of negative refraction:

${ }^{1}$ V. G. Veselago, Ser. Phyz. Uip. 92, 517 (1964)
A. Sukhovich, ${ }^{1}$ B. Merheb, ${ }^{2}$ K. Muralidharan, ${ }^{2}$ J. O. Vasseur, ${ }^{3}$ Y. Pennec, ${ }^{3}$ P. A. Deymier, ${ }^{2}$ and J. H. Page ${ }^{1}$
${ }^{1}$ Department of Physics and Astronomy, University of Manitoba, Winnipeg. Manitobo, R3T 2N2, Camada
${ }^{2}$ Department of Materials Science and Engineering, University of Arizona, Tweson, Arizona 85721, USA
$3 /$ nstitut d'Electronique, de Micm-electmnique et de Nanotechmologie, UMR CNRS 8520. Cite Scientifique. 59652 villenerve d'Aseq Cedex, France

FDTD Model

Experiment

(a) Experimental field amplitude, (b) Amplitude through focus along direction parallel to lens surface, (c) The data fit to a sinc function gives a half width of the primary peak of $0.37 \mathrm{\lambda}$, (c) amplitude along the direction perpendicular to lens. Surface at $\mathbf{Z}=\mathbf{0}$.

(a) Calculated normalized absolute value of pressure, (b) Amplitude through focus along direction parallel to lens surface, (c) The data fit to a sinc function gives a half width of the primary peak of 0.35λ, , (c) amplitude along the direction perpendicularto lens. Surface at $7=0$

NewFoS

Phase Domain symmetry breaking and Topology

The Nobel Prize in Physics 2016

Photo: A. Mahmoud David J. Thouless Prize share: 1/2

Photo: A. Mahmoud
F. Duncan M.

Haldane
Prize share: 1/4

Photo: A. Mahmoud
J. Michael Kosterlitz

Prize share: $1 / 4$

The Nobel Prize in Physics 2016 was divided, one half awarded to David J. Thouless, the other half jointly to F. Duncan M. Haldane and J. Michael Kosterlitz "for theoretical discoveries of topological phase transitions and topological phases of matter".

Symmetry breaking of elastic and acoustic waves equation

- Time-reversal symmetry
- Parity symmetry
- Chiral symmetry
- Particle-hole symmetry

Conventional 1D wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}-\beta^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Intrinsic vs Extrinsic symmetry breaking

(a) intrinsic symmetry breaking occurs from the internal structural characteristics,
 (b) extrinsic symmetry breaking occurs from an external stimulus such as spatio-temporal modulations of the physical properties of the medium.

Intrinsic approach to symmetry breaking

Quantum-analogue phononic systems

Intrinsic phononic structure

Relativistic quantum mechanics
Klein-Gordon Equation

Other examples of physical systems

Intrinsic acoustic and phononic structures

Dirac-like equation $\left[\sigma_{x} \frac{\partial}{\partial t}+i \beta \sigma_{y} \frac{\partial}{\partial x}-i \alpha I\right] \Psi=0 \quad$ "particle" $\left[\boldsymbol{\sigma}_{x} \frac{\partial}{\partial t}+i \beta \boldsymbol{\sigma}_{y} \frac{\partial}{\partial x}+i \alpha I\right] \bar{\Psi}=0 \quad$ "anti-particle"
σ_{x} and σ_{y} are the 2×2 Pauli matrices: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and I is the 2×2 identity matrix.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

Some matrix algebra

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)=0
\end{aligned}
$$

Dirac-like equation

$$
\begin{aligned}
& {\left[\sigma_{x} \frac{\partial}{\partial t}+i \beta \sigma_{y} \frac{\partial}{\partial x}-i \alpha I\right] \Psi=0 \quad \text { "particle" }} \\
& {\left[\sigma_{x} \frac{\partial}{\partial t}+i \beta \sigma_{y} \frac{\partial}{\partial x}+i \alpha I\right] \bar{\Psi}=0 \quad \text { "anti-particle" }}
\end{aligned}
$$

$t \rightarrow-t$ alone changes the equations, time-reversal symmetry is broken
$\chi \rightarrow-\chi$ alone changes the equations, parity symmetry is broken
$t \rightarrow \underset{\text { and }}{\rightarrow}-t$ does not change the equations, time-reversal and parity $x \rightarrow-x$ symmetry are not broken simultaneously

Spinor solutions

NewF-aS

Eigen vectors:
Plane wave solutions $\left\{\begin{array}{c}\psi_{k}=\psi\left(k, \omega_{k}\right)=c_{0} \xi_{k}\left(k, \omega_{k}\right) e^{(\pm) i \omega_{k} t} e^{(\pm) i k x} \\ \bar{\psi}_{k}=\bar{\psi}\left(k, \omega_{k}\right)=c_{0} \bar{\xi}_{k}\left(k, \omega_{k}\right) e^{(\pm) i \omega_{k} t} e^{(\pm) i k x} \\ \text { where } \xi_{k} \text { and } \bar{\xi}_{k} \text { are two by one spinors with } \xi_{k}=\binom{\xi_{k, L}}{\xi_{k, R}}\end{array}\right.$

$$
\omega= \pm \sqrt{\alpha^{2}+\beta^{2} k^{2}}
$$

Eigen values:
Dispersion relation

Band structure is symmetrical (\pm), particle-hole (antiparticle) symmetry is not broken

	$e^{\text {tikx }} e^{\text {ti } \omega_{k} t}$	$e^{-i k x} e^{\text {ti }} \omega_{k} t$	$e^{\text {tikx }} e^{-i \omega_{k} t}$	$e^{-i k x} e^{-i \omega}$	
ξ_{k}	$\binom{\sqrt{\omega+\beta k}}{\sqrt{\omega-\beta k}}$	$\binom{\sqrt{\omega-\beta k}}{\sqrt{\omega+\beta k}}$	$\binom{-\sqrt{\omega-\beta k}}{\sqrt{\omega+\beta k}}$	$\binom{-\sqrt{\omega+\beta k}}{\sqrt{\omega-\beta k}}$	Left (L) propagation and right (R) propagations are note
ξ_{k}	$\binom{\sqrt{\omega-\beta k}}{-\sqrt{\omega+\beta k}}$	$\binom{\sqrt{\omega+\beta k}}{-\sqrt{\omega-\beta k}}$	$\binom{\sqrt{\omega+\beta k}}{\sqrt{\omega-\beta k}}$	$\binom{\sqrt{\omega-\beta k}}{\sqrt{\omega+\beta k}}$	independent, chiral symmetry is broken

Spinor solutions (2)

Symmetry

$$
\underset{k \rightarrow-k}{T} \underset{\substack{\omega \rightarrow \omega}}{ }(\boldsymbol{\Psi}(\omega, k))=\boldsymbol{\Psi}(\omega, k)
$$

$$
\underset{k \rightarrow k}{T \omega \rightarrow-\omega}(\Psi(\omega, k))=i \sigma_{x} \bar{\Psi}(-\omega, k)
$$

$$
T \omega \rightarrow-\omega(\Psi(\omega, k))=i \sigma_{x} \bar{\Psi}(-\omega,-k)
$$

$$
k \rightarrow-k
$$

$T \omega \rightarrow \omega$ and $T \omega \rightarrow-\omega$ are transformations that change $k \rightarrow-k \quad k \rightarrow k$
the sign of the frequency and wave number.
Orthogonality condition $\overline{\boldsymbol{\Psi}} \boldsymbol{\sigma}_{\boldsymbol{x}} \boldsymbol{\Psi}=\mathbf{0}$

Topology

Parallel transport of a vector field on a manifold with $1 / 4$ turn twist ("i" leads to a phase of $\pi / 2$)

Pseudospin φ-bit

Spin-like states in the direction of propagation of elastic states (forward $|F\rangle=\binom{1}{0}$ or $|0\rangle$ and backward $|B\rangle=\binom{0}{1}$ or $|1\rangle$) and crucially superposition of states:
$\left(s_{1} \sqrt{\omega \pm \beta k}\right)|0\rangle+$ $\left(s_{2} \sqrt{\omega \bar{\mp} \beta k}\right)|1\rangle$. The superposition of states is tunable by frequency, ω and/or wavenumber k.

The Phi-Bit

Spin Polarization

Spin

Direction of Propagation

Pseudo-spin

Elastic Pseudospin

Acoustic metamaterials and phononic crystals
Torsional topology and fermion-like behavior of elastic waves
 in phononic structures

Pierre A. Deymier ${ }^{\text {T }}$, Keith Runge, Nick Swinteck, Krishna Muralidharan


```
AETICAE INFO
Estuing
bmend 15 mony 200s
Ampme ts My pon
```



```
N\mp@code{Nyms}
```



```
ABSTEACT
```


 twose way plum.

Perystals
MDPI

Artiole
 One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology

Pierre Deymier * and Keith Runge

 kruspetternallariensade

Academic EStoes Victer) Sanchex-Moerilla, Viont Rowero-Garcia and Lais M Garcia Ravic Reverved 26 February 201ti Aoorpted 13 Apel 201t, PiAlishod. 16 April 2016

Abstract There ase tro clanses of phononic structures that can support elastic waves with non-comentional topology, namely intrinsic and extrinsic ayslems. The non-conwentional topology of elastic wave results from beaking time eeversal symmetry (T-symestry) of wave propagation. In extrinsic systems, energy is injecied into the phononic structure bo bwak T-symmetry. In intrinsic systems symmetry is broken through the medium micoostructue that may lead to inkernal resonances Mass-spring composite strustures are introduced as metaphors for move complex phononic arystals with non-comentional topology. The elastic wave equation of motion of an intrinsic phononic structare composed of two coupled one-dimensional (1D) harmonic chains can be factored into a Dicac-like equation, leading to antisymmetric modes that hwe spinor character and thewfore non-oowentional lopology in wave number space. The lopology of the elastic waves can be further modified by subjecting phononic structures bo externally-induced spatio-femperal modulation of their elastic properties. Such modulations can be actasted through photo-elastic effects, magnetorelastic effects, piozo-clectric effects or extesmal mechanical effects. We also uncover an analogy between a combined intrinsic-extriseic sysbeme composed of a simple one-dimeveiceall harmonic chain coupled Ho a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffisess and the Dirac equation in the powence of an electromagnetic fiveld. Thw modulatioss is shown bo be able to tune the spiner part of the clastic wave function and thewiow its fopology. This anakogy betwewn daveical mechanics and quantum phenomena etbers new modalities for doveloping moev complea functions of phosonic cryelals and acoustic metamaterials

Pseudospin φ-bit

$\underset{\text { equation }}{\text { 1-D Dirac }} \quad\left[\sigma_{x} \frac{\partial}{\partial t}+i \beta \sigma_{y} \frac{\partial}{\partial x} \pm i \alpha I\right] \psi=0$
σ_{x} and σ_{y} are the 2×2 Pauli matrices and \boldsymbol{I} is the 2×2 identity

Spin-like states in the cirection of propagation of elastic states (forward $|F\rangle=\binom{1}{0}$ or|0) and backward $|B\rangle=\binom{0}{1}$ or $|1\rangle$) and crucially superposition of states: $\left(s_{1} \sqrt{\omega \pm \beta k}\right)|0\rangle+$
$\left(s_{2} \sqrt{\omega \mp \beta k}\right)|1\rangle$. The
superposition of states is tumable by frequency, ω and/or wavenumber k

1Plane wave solutions

$$
\left\{\begin{array}{l}
\psi_{k}=\psi\left(k, \omega_{k}\right)=c_{0} \xi_{k}\left(k, \omega_{k}\right) e^{(\pm) i \omega_{k} t} e^{(\pm) i k x} \\
\bar{\psi}_{k}=\bar{\psi}\left(k, \omega_{k}\right)=c_{0} \xi_{k}\left(k, \omega_{k}\right) e^{\alpha^{2}+\beta^{2} k^{2}} \\
\text { where } \xi_{k} \text { and } \xi_{k} \text { are two by one spinors }
\end{array}\right.
$$

Observables

Number operator
~-ronwo..

Direction switching operators

$$
\begin{aligned}
& S_{+}=\frac{1}{2}\left(\sigma_{x}+i \sigma_{y}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& S_{-}=\frac{1}{2}\left(\sigma_{x}-i \sigma_{y}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

"Amount" of traveling wave character of the wave function

$$
\left(n_{k}^{+}-n_{k}^{-}\right)^{0.5}
$$

$$
\left(n_{k}^{+}-n_{k}^{-}\right)=\frac{\sqrt{\omega^{2}-\alpha^{2}}}{\omega}
$$

Transmission coefficient

 is measurable$$
\begin{aligned}
& \text { Direction occupancy } \\
& n_{k}^{+}=\overline{\xi_{k}} \frac{1}{2 \omega} S_{+} S_{-} \sigma_{x} \xi_{k} \\
& n_{k}^{-}=\xi_{k} \frac{1}{2 \omega} S_{-} S_{+} \sigma_{x} \xi_{k}
\end{aligned}
$$

$$
n_{k}^{ \pm}=\frac{1}{2} \pm \frac{\beta k / \alpha}{2 \sqrt{1+\left(\frac{\beta k}{\alpha}\right)^{2}}}
$$

In contrast with quantum superposition, an elastic superposition of states
$(s=\sqrt{\omega \pm \beta k})|0\rangle+(s=\sqrt{\omega \mp \beta k})|1\rangle$
For frequencies 100 kHz to 1 MHz wavelength is cm to is measurable directly through the transmission coefficient, without need for wave function collapse. mm which is significantly larger than possible defect scattering length:
Signal to noise ratio $\sim 10^{+3}$.

Physical realization and operation of a φ-bit

Near band gap Ti-Sapphire laser radiation

Qubit vs $\boldsymbol{\varphi}$-bit Deutsch-Jozsa algorithm

Deutsch-Jozsa Objective: Determine if the function
$f:\{0,1\} \rightarrow\{0,1\}$ is constant or balanced.

Hadamard gate applied a second time to 'collapse' the wavefunction.

No second Hadamard gate is needed, the superposition of states is read directly.

New|-aS

Single $\boldsymbol{\varphi}$-bit Deutsch-Jozsa algorithm

Step 1: Apply Hadamard gate

Step 2: Oracle unitary transformation

Step 3: Measure superposition of states

Note: In a qubit-based algorithm, the superpositions of states $|0\rangle+|1\rangle$ or $|0\rangle-|1\rangle$ cannot be measured. One needs to apply the Hadamard gate after step 2 to collapse the superposition of state into measurable pure states |O) if the function is constant or |1) if it is balanced. Using a φ-bit, one can directly and advantageously measure the superposition of state by the voltage at a transducer.

Non-separable superposition of states in parallel φ-bit arrays

- The power of quantum computing lies in the concept of entanglement.
- The state of two quantum subsystems in separable superposition is the tensor product of the states of the two individual subsystems:

$$
\psi_{12}=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

- The state of two quantum subsystems in non-separable superposition cannot be written as a tensor product of the states of the subsystems.

$$
\psi_{12} \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

Newl-oS

The power of exponential complexity

- Two non-separable φ-bits 1 and 2 support 2^{2} "bits."
- Affecting the state of subsystem 1 in a non-separable superposition of states impacts the state of subsystem 2 , thus operating on the 2^{2} "bits."
- N non-separable φ-bits support 2^{N} "bits."
- Operating on any subsystem in a non-separable superposition operates on the 2^{N} "bits."
- Hence, arrays of φ-bits in non-separable states offer massively parallel processing of phonons. For example, an array of $N=50 \varphi$-bits, which is easily technologically realizable, has a parallel computing capacity of 2^{50} or $\sim 1 \times 10^{15}$ bits (Petascale).

New|-aS

Elastic waves in non-separable states

Example: two φ-bits, " a " and " b," coupled in parallel through an elastic medic Elastic displacements are " u " and " v ".

Coupled 1-D Elastic KleinGordon wave equations

$$
\begin{array}{r}
\left(\frac{\partial^{2}}{\partial t^{2}}-\beta^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u+\gamma^{2}(u-v)= \\
0\left(\frac{\partial^{2}}{\partial t^{2}}-\beta^{2} \frac{\partial^{2}}{\partial x^{2}}\right) v-\gamma^{2}(u-
\end{array}
$$

$$
v)=0
$$

$\underset{\substack{\text { equation }}}{\text { 1-D Elastic Dirac }}\left[\sigma_{x} \otimes \sigma_{x} \frac{\partial}{\partial t}+i \beta \sigma_{x} \otimes \sigma_{y} \frac{\partial}{\partial x} \pm i \delta C\right] \Psi=0 \quad$ with $\boldsymbol{C}=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right) \otimes\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\delta=\frac{1}{\sqrt{2}} \gamma$

$$
\Psi=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) e^{+i \omega t} e^{+i k x}
$$

A two φ-bit non-separable superposition of states relates to the amplitude of forward propagating waves in bits " a " and " b " $\left(a_{1}\right.$ and $\left.a_{3}\right)$ as well as backward propagating waves in bits " a " and " b " $\left(a_{2}\right.$ and $\left.a_{4}\right)$.

Elastic waves in non-separable states (continues)

Elastically coupled φ-bits

4×1 spinorial plane wave solutions

$$
\Psi=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) e^{+i \omega t} e^{+i k x}
$$

Individual φ-bit solutions

Antisymmetric solutions solutions

$$
\begin{aligned}
& \left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=a_{0}\left(\begin{array}{c}
\sqrt{+} \sqrt{+} \\
-\sqrt{+} \sqrt{-} \\
-\sqrt{+} \sqrt{+} \\
\sqrt{+} \sqrt{-}
\end{array}\right) \\
& \psi_{a b} \neq\left|\psi_{a}\right\rangle \otimes\left|\psi_{b}\right\rangle
\end{aligned}
$$

$$
\otimes\binom{s_{1}^{b} \sqrt{ \pm}}{s_{2}^{b} \sqrt{\mp}}=\left(\begin{array}{l}
s_{1}^{a} s_{1}^{b} \sqrt{ \pm} \sqrt{ \pm} \\
s_{1}^{a} s_{2}^{b} \sqrt{ \pm} \sqrt{\mp} \\
s_{2}^{a} s_{1}^{b} \sqrt{\mp} \sqrt{ \pm} \\
s_{2}^{a} s_{2}^{b} \sqrt{\mp} \sqrt{\mp}
\end{array}\right)
$$

But for special cases

\mathbf{N} coupled φ-bits

Nx1 non-separable spinorial plane wave solutions

$$
\Psi_{123 \ldots N}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
\vdots \\
a_{N-1} \\
a_{N}
\end{array}\right) e^{+i \omega t} e^{+i k x}
$$

Multi-pseudospin superpositions of ϕ-bit states are experimentally measurable from the transmission coefficients of individual fibers constituting the array.

$$
\Psi_{123 \ldots N} \neq \Psi_{1} \otimes \Psi_{2} \otimes \Psi_{3} \otimes \ldots \otimes \Psi_{N}
$$

Deutsch-Jozsa algorithm with entanglement

Consider a Boolean function defined from a twobit domain space to a one-bit range space: $f(x)$: $\{0,1\}^{2} \rightarrow\{0,1\}$. There are four possible input values $(00),(01),(10)$ and (11) and the output for each of these could be either 0 or 1 . There are thus 16 functions in all. For a given function, the output can have either: all ones, three ones and a zero, two ones and two zeros, three zeros and one one or all zeros. We can divide the function into classes $[0,4],[1,3],[2,2],[3,1]$, and $[4,0]$, the first entry indicating the number of ones and the second indicating the number of zeros in the output. The functions with an even number ($0,2,4$) of ones (i.e. the functions $[0,4],[2,2]$ and $[4,0]$) are defined as "Even" functions while the functions with an odd number $(1,3)$ of ones in the output (i.e. the $[1,3]$ and $[3,1]$ functions) are defined to be "Odd" functions. Using this evaluation criterion, of the 16 possible functions for the two-bit case, eight are even and eight are odd.

> Given a function f, how does one decide whether it is even or odd, without computing the function at all input points?

A two-qubit algorithm involving quantum entanglement
Arvis ${ }^{1 *}$ and N. Mubumbar ${ }^{214}$
arXiv: quant-ph/0006069v1

Deutsch-Jozsa algorithm with entanglement

(2)

| - | | |
| :--- | :--- | :--- | :--- |
| H | | |
| | | |
| | | |

$$
U_{f}=\left(\begin{array}{cccc}
(-1)^{f(00)} & 0 & 0 & 0 \\
0 & (-1)^{f(01)} & 0 & 0 \\
0 & 0 & (-1)^{f(10)} & 0 \\
0 & 0 & 0 & (-1)^{f(11)}
\end{array}\right)
$$

Class	Number	Nature	U_{f}	DJ Class
$[0,4]$	1	Even	Separable	Constant
$[1,3]$	4	Odd	Entangling	-
$[2,2]$	6	Even	Separable	Balanced
$[3,1]$	4	Odd	Entangling	-
$[4,0]$	1	Even	Separable	Constant

TABLE I. Characteristics of different classes of functions. In each class we give number of functions, their even or odd nature, the entangling or separable nature of U_{f} and their status in DJ problem.

For an "even" function, the final state is separable For an "odd" function, the final state is non-separable (entangled)

Note: No unambiguous single measurement of entangled states of quantum systems (needs multiple measurement and statistics)

Deutsch-Jozsa algorithm with entanglement (3)

For an "even" function, the final state is separable For an "odd" function, the final state is non-separable (entangled)
Two elastically coupled $¢$ bitis

$$
\begin{gathered}
k=0, \omega=2 \delta \text { and } \sqrt{+}=\sqrt{-}=\sqrt{2 \delta} \\
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=a_{0} 2 \delta\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)=a_{0} 2 \delta\binom{1}{-1} \otimes\binom{1}{-1} \quad \text { separable } \\
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=a_{0}\left(\begin{array}{c}
\sqrt{+} \sqrt{+} \\
-\sqrt{+} \sqrt{-} \\
-\sqrt{+} \sqrt{+} \\
\sqrt{+} \sqrt{-}
\end{array}\right) \text { otherwise } \\
\delta \rightarrow 0 \text { then } \omega \rightarrow \beta k \text { and } \sqrt{+} \rightarrow \sqrt{2 \beta k} \text { and } \sqrt{-} \rightarrow 0
\end{gathered} \quad \begin{aligned}
& \text { Septangled } \\
& \left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=a_{0} \sqrt{2 \beta k}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)=a_{0} \sqrt{2 \beta k}\binom{1}{-1} \otimes\binom{1}{0}
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Single } \\
\text { measurement of } \\
\text { transmission }
\end{array}
\end{aligned}
$$

New|-aS

NEW FRONTIERS OF SOUND

Extrinsic approach to symmetry breaking

Design of Elastic Band Structures with Broken Symmetry via SpatioTemporal Modulations of Elasticity

Non-reciprocal elastic wave propagation

JOURNAL OF APPLIED PHYSICS 118, 063103 (2015)

Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice
N. Swinteck, ${ }^{1,2 k}$ S. Matsuo, ${ }^{1}$ K. Runge, ${ }^{1}$ J. O. Vasseur, ${ }^{2}$ P. Lucas, ${ }^{1}$ and P. A. Deymier ${ }^{1}$
${ }^{1}$ Department of Materials Science and Engincering. University of Arisoma, Twrson, Arisona 85721, USA
${ }^{3}$ Instinut dEEectronique, de Micro-ilectronique et de Nanotechnologie, UMR CNRS 8520 , Ciné Scienuifique. 59652 Villencowe of Asceq Cedex. France
(Received 8 May 2015; accepted 3 Angust 2015; published oaline 14 August 2015)
Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by a manifold in momentum space with the topology of a single Iwist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves. © 2015 A/P Publishing LLC. [htip://du.doi.org/10.1063/1.4928619]

Photo-elastic effect

FIG. 4. Variations in longitudinal elastic constant $C_{11}(x)$ in $\mathrm{Ge}_{x} \mathrm{Se}_{1-x}$ glasses as a function of power P_{r} (indicated for each curve). Here x_{c} and x_{t} designate, respectively, the observed threshold in light-induced softening of C_{11} and the mean-field rigidity transition. The lines at $x=0.20$ and 0.26 designate, respectively. the rigidity and stress transition in the present glasses (see Ref. [21]).
J. Gump, I. Finckler, H. Xia, R. Sooryakumar, W. J. Bresser, and P. Boolchand, "Light-induced giant softening of network glasses observed near the mean-field rigidity transition," Phys. Rev. Lett. 92, 245501 (2004).

Spectral Energy Density (SED) method

$$
\Phi(\vec{k}, \omega)=\frac{1}{4 \pi \tau_{0} N} \sum_{\alpha} \sum_{b}^{B} m_{b}\left|\int_{0}^{\tau_{0}} \sum_{n_{x, y, z}}^{N} v_{\alpha}\binom{n_{x, y, z} ; z}{b} \times e^{\left(\vec{k} \cdot \overrightarrow{r_{0}}-i \omega t\right)} d t\right|^{2}
$$

$v_{\alpha}\left(\begin{array}{c}n_{x, y, z} \\ b\end{array} t\right)$ represents the velocity of atom b (of mass m_{b} in unit cell $\left.n_{x, y, z}\right)$ in the α-direction.

Understanding dynamically rewritable superlattices

Topology

Non-reciprocity of elastic wave propagation

Immunity to backscattering by defects

(a)

(b)

Hybridization gaps

NewFos

(a)

(b)

Brillouin scattering Stokes and anti-Stokes modes

$$
v_{n}=v_{0} \pm n F
$$ where $F=\frac{\Omega}{2 \pi}=\frac{V}{L}$ and $n=1,2,3, \ldots$

Introduction to multiple time scale perturbation theory

$$
\frac{\partial^{2} u}{\partial t^{2}}-\beta^{2} \frac{\partial^{2} u}{\partial x^{2}}+\varepsilon f(u)=0
$$

$$
u\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)=u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+\varepsilon u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+\varepsilon^{2} u_{2}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+
$$

$$
\tau_{0}=t, \tau_{1}=\varepsilon t, \text { and } \tau_{2}=\varepsilon^{2} t=\varepsilon^{2} \tau_{0}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \tau_{0}} \frac{\partial \tau_{0}}{\partial t}+\frac{\partial u}{\partial \tau_{1}} \frac{\partial \tau_{1}}{\partial t}+\frac{\partial u}{\partial \tau_{2}} \frac{\partial \tau_{2}}{\partial t}+\cdots=\frac{\partial u}{\partial \tau_{0}}+\varepsilon \frac{\partial u}{\partial \tau_{1}}+\varepsilon^{2} \frac{\partial u}{\partial \tau_{2}}+\cdots \\
& \frac{\partial u}{\partial t}=\frac{\partial u_{0}}{\partial \tau_{0}}+\varepsilon\left(\frac{\partial u_{1}}{\partial \tau_{0}}+\frac{\partial u_{0}}{\partial \tau_{1}}\right)+\varepsilon^{2}\left(\frac{\partial u_{2}}{\partial \tau_{0}}+\frac{\partial u_{1}}{\partial \tau_{1}}+\frac{\partial u_{0}}{\partial \tau_{2}}\right)+\cdots \\
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial \tau_{0}}\left(\frac{\partial u}{\partial t}\right)+\varepsilon \frac{\partial}{\partial \tau_{1}}\left(\frac{\partial u}{\partial t}\right)+\varepsilon^{2} \frac{\partial}{\partial \tau_{2}}\left(\frac{\partial u}{\partial t}\right)+\cdots \\
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u_{0}}{\partial \tau_{0}^{2}}+\varepsilon\left(\frac{\partial^{2} u_{1}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{0}}\right)+\varepsilon^{2}\left(\frac{\partial^{2} u_{2}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{1} \partial \tau_{0}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{2} \partial \tau_{0}}+\frac{\partial^{2} u_{0}}{\partial \tau_{1}^{2}}\right)
\end{aligned}
$$

Introduction to multiple time scale perturbation theory (2)

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}-\beta^{2} \frac{\partial^{2} u}{\partial x^{2}}+\varepsilon f(u)=0 \\
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u_{0}}{\partial x^{2}}+\varepsilon \frac{\partial^{2} u_{1}}{\partial x^{2}}+\varepsilon^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}+\cdots \\
f(u)=u^{2}=\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\cdots\right)^{2}=u_{0}^{2}+\varepsilon\left(u_{0} u_{1}+u_{1} u_{0}\right)+\cdots
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\frac{\partial^{2} u_{0}}{\partial \tau_{0}^{2}}-\beta^{2} \frac{\partial^{2} u_{0}}{\partial x^{2}}\right\}+\varepsilon\left\{\frac{\partial^{2} u_{1}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{0}}-\beta^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}}+u_{0}^{2}\right\}+\varepsilon^{2}\left\{\frac{\partial^{2} u_{2}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{1} \partial \tau_{0}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{2} \partial \tau_{0}}+\frac{\partial^{2} u_{0}}{\partial \tau_{1}^{2}}-\right. \\
& \left.\beta^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}+\left(u_{0} u_{1}+u_{1} u_{0}\right)\right\}=0
\end{aligned}
$$

Introduction to multiple time scale perturbation theory（3）

To zeroth order：$\quad \frac{\partial^{2} u_{0}}{\partial \tau_{0}^{2}}-\beta^{2} \frac{\partial^{2} u_{0}}{\partial x^{2}}=0$
To first order：$\quad \frac{\partial^{2} u_{1}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{0}}-\beta^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}}+u_{0}^{2}=0$
To second order：$\quad \frac{\partial^{2} u_{2}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{1} \partial \tau_{0}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{2} \partial \tau_{0}}+\frac{\partial^{2} u_{0}}{\partial \tau_{1}^{2}}-\beta^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}+\left(u_{0} u_{1}+u_{1} u_{0}\right)=0$

Introduction to multiple time scale perturbation theory (4)

To zeroth order: $\quad \frac{\partial^{2} u_{0}}{\partial \tau_{0}^{2}}$
To first order: $\quad \frac{\partial^{2} u_{1}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{0}}$
To second order: $\quad \frac{\partial^{2} u_{2}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{1} \partial \tau_{0}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{2} \partial \tau_{0}}+\frac{\partial^{2} u_{0}}{\partial \tau_{1}^{2}}$
To third order: $\quad \frac{\partial^{2} u_{3}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{2}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{3} \partial \tau_{0}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{0} \partial \tau_{2}}+2 \frac{\partial^{2} u_{2}}{\partial \tau_{1} \partial \tau_{0}}+\frac{\partial^{2} u_{1}}{\partial \tau_{1}^{2}}$
To fourth order: $\quad \frac{\partial^{2} u_{4}}{\partial \tau_{0}^{2}}+2 \frac{\partial^{2} u_{3}}{\partial \tau_{0} \partial \tau_{1}}+2 \frac{\partial^{2} u_{2}}{\partial \tau_{0} \partial \tau_{2}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{0} \partial \tau_{3}}+2 \frac{\partial^{2} u_{1}}{\partial \tau_{2} \partial \tau_{1}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{4} \partial \tau_{0}}+2 \frac{\partial^{2} u_{0}}{\partial \tau_{1} \partial \tau_{3}}+$ $\frac{\partial^{2} u_{2}}{\partial \tau_{1}^{2}}+\frac{\partial^{2} u_{0}}{\partial \tau_{2}^{2}}$

Elastic wave equation

1D elastic wave equation with spatio-temporal variation in stiffness
$\rho \frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial}{\partial x}\left(C(x, t) \frac{\partial u(x, t)}{\partial x}\right)$ with $\quad C(x, t)=C_{0}+2 C_{1} \sin (K x+\Omega t)$

Seek solution in the form of Bloch waves
The wave number k is limited to the first

Brillouin zone: $\left[\frac{-\pi}{L}, \frac{\pi}{L}\right]$ and $g=\frac{2 \pi}{L} m$ with m being a positive or negative integer

1D elastic wave equation in wave number space becomes

$$
\begin{aligned}
& \frac{\partial^{2} u(k+g, t)}{\partial t^{2}}+v_{a}^{2}(k+g)^{2} u(k+g, t)=i \varepsilon\left\{f\left(k^{\prime}\right) u\left(k^{\prime}, t\right) e^{i \Omega t}+h\left(k^{\prime \prime}\right) u\left(k^{\prime \prime}, t\right) e^{-i \Omega t}\right\} \\
& \text { where } f(k)=K k+k^{2}, h(k)=K k-k^{2}, k^{\prime}=k+g-K \text { and } k^{\prime \prime}=k+g+K . \\
& \quad \text { and } \quad v_{a}^{2}=\frac{c_{0}}{\rho} \text { and } \varepsilon=\frac{c_{1}}{\rho}
\end{aligned}
$$

Multiple time scale perturbation theory

Expand the displacement to second order in perturbation ε

$$
u\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)=u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+\varepsilon u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+\varepsilon^{2} u_{2}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)
$$

Define three time scales

$$
\tau_{0}=t, \tau_{1}=\varepsilon t, \text { and } \tau_{2}=\varepsilon^{2} t=\varepsilon^{2} \tau_{0}
$$

To $0^{\text {th }}$ order $\frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)=0$
To $1^{\text {st }}$ order $\frac{\partial^{2} u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+2 \frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{1} \partial \tau_{0}}$
$=i\left\{f\left(k^{\prime}\right) u_{0}\left(k^{\prime}, \tau_{0}, \tau_{1}, \tau_{2}\right) e^{i \Omega \tau_{0}}+h\left(k^{\prime \prime}\right) u_{0}\left(k^{\prime \prime}, \tau_{0}, \tau_{1}, \tau_{2}\right) e^{-i \Omega \tau_{0}}\right\}$
To $2^{\text {nd }}$ order $\frac{\partial^{2} u_{2}\left(k+g, \tau_{0}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{2}\left(k+g, \tau_{0}, \tau_{2}\right)+2 \frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{2}\right)}{\partial \tau_{2} \partial \tau_{0}}$

$$
=i\left\{f\left(k^{\prime}\right) u_{1}\left(k^{\prime}, \tau_{0}, \tau_{2}\right) e^{i \Omega \tau_{0}}+h\left(k^{\prime \prime}\right) u_{1}\left(k^{\prime \prime}, \tau_{0}, \tau_{2}\right) e^{-i \Omega \tau_{0}}\right\}
$$

Perturbative solutions ($0^{\text {th }}$ order)

$$
\begin{gathered}
\frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)=0 \\
u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)=a_{0}\left(k+g, \tau_{1}, \tau_{2}\right) e^{i \omega_{0}(k+g) \tau_{0}}
\end{gathered}
$$

Perturbative solutions ($1^{\text {st }}$ order)

$$
\begin{aligned}
& \frac{\partial^{2} u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{1}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)+2 \frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{1}, \tau_{2}\right)}{\partial \tau_{1} \partial \tau_{0}} \\
& =i\left\{f\left(k^{\prime}\right) u_{0}\left(k^{\prime}, \tau_{0}, \tau_{1}, \tau_{2}\right) e^{i \Omega \tau_{0}}+h\left(k^{\prime \prime}\right) u_{0}\left(k^{\prime \prime}, \tau_{0}, \tau_{1}, \tau_{2}\right) e^{-i \Omega \tau_{0}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}\left(k+g, \tau_{0}, \tau_{2}\right) \\
& =a_{1}\left(k+g, \tau_{2}\right) e^{i \omega_{0}(k+g) \tau_{0}} \\
& +i \frac{f\left(k^{\prime}\right) a_{0}\left(k^{\prime}, \tau_{2}\right)}{\omega_{0}^{2}(k+g)-\left(\omega_{0}\left(k^{\prime}\right)+\Omega\right)^{2}+i \varphi} e^{i\left(\omega_{0}\left(k^{\prime}\right)+\Omega\right) \tau_{0}} \\
& +i \frac{h\left(k^{\prime \prime}\right) a_{0}\left(k^{\prime \prime}, \tau_{2}\right)}{\omega_{0}^{2}(k+g)-\left(\omega_{0}\left(k^{\prime \prime}\right)-\Omega\right)^{2}+i \varphi} e^{i\left(\omega_{0}\left(k^{\prime \prime}\right)-\Omega\right) \tau_{0}}
\end{aligned}
$$

Brillouin scattering like phenomenon

Perturbative solutions (2 ${ }^{\text {nd }}$ order)

$$
\begin{aligned}
& \frac{\partial^{2} u_{2}\left(k+g, \tau_{0}, \tau_{2}\right)}{\partial \tau_{0}{ }^{2}}+\omega_{0}^{2}(k+g) u_{2}\left(k+g, \tau_{0}, \tau_{2}\right)+2 \frac{\partial^{2} u_{0}\left(k+g, \tau_{0}, \tau_{2}\right)}{\partial \tau_{2} \partial \tau_{0}} \\
& =i\left\{f\left(k^{\prime}\right) u_{1}\left(k^{\prime}, \tau_{0}, \tau_{2}\right) e^{i \Omega \tau_{0}}+h\left(k^{\prime \prime}\right) u_{1}\left(k^{\prime \prime}, \tau_{0}, \tau_{2}\right) e^{-i \Omega \tau_{0}}\right\}
\end{aligned}
$$

Other application domains

1. Extension to electromagnetic waves (Dynamical "microstructures" of index of refraction)
2. Extension to spin waves (Dynamical "microstructures" of exchange coupling)
3. Extension to electronic waves (Dynamical
"microstructure" of potential)
4. Extension to chemical or biological waves (Dynamical
"microstructure" of diffusion coefficient)

Calcium waves

SMOOTH MUSCLE CELLS

NEW FRONTIERS OF SOUND

Breaking symmetry of calcium waves

Agonist

(hormone, e.g.

$-\infty 4 \cdots$ cell $_{-1}$ cell $_{0}$ cell $_{I}$ cell $_{2} \cdots \cdots$, cell $_{i} \cdots>\infty$

Linear model

$$
\begin{aligned}
& \frac{\partial C(x, t)}{\partial t}=\frac{\partial}{\partial x}\left[D_{c}(x, t) \frac{\partial C(x, t)}{\partial x}\right]-r P(x, t) \\
& \frac{\partial P(x, t)}{\partial t}=\frac{\partial}{\partial x}\left[D_{p}(x, t) \frac{\partial P(x, t)}{\partial x}\right]+r C(x, t)
\end{aligned}
$$

with

$$
D_{c}(x, t)=D_{0 c}+2 D_{1 c} \cos (K x+\Omega t)
$$

the Ca^{2+} and IP_{3} waves perturbed by the acoustic wave is not symmetrical about the origin $k=0$.

Need for nonlinear model

Turing noted the importance of studying the behavior of biological processes by considering the complementarity of both linear and nonlinear dynamical systems:
"Such systems (with linear dynamics) certainly have a special interest as giving the appearance of a pattern, but they are the exception rather than the rule. Most of an organism, most of the time, is developing from one pattern into another, rather than from homogeneity into a pattern. One would like to be able to follow this more general process (nonlinear) mathematically also. The difficulties are, however, such that one cannot hope to have any very embracing theory of such processes, beyond the statement of the equations. It might be possible, however, to treat a few particular cases in detail with the aid of a digital computer." (parenthetical comments added)

Calcium wave dynamics

Symmetry breaking of Calcium wave propagation

Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

P. A. Deymier, ${ }^{1+*}$ N. Swinteck, ${ }^{1}$ K. Runge, ${ }^{1}$ A. Deymier-Black, ${ }^{2}$ and J. B. Hoying ${ }^{3}$
${ }^{1}$ Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, USA
${ }^{2}$ Department of Orthopaedic Surgery. Washington University in St. Louis, St. Louis, Missouri 631IO, USA
${ }^{3}$ Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky 40202, USA
(Received 9 June 2015; revised manuscript received 11 August 2015; published 9 November 2015)

We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

Financial support

Emerging Frontiers in Research and Innovation Award \# 1640860
W.M. Keck Foundation

Upcoming Book
(Aug.-Sept.. 2017)

TOPOLOGY, DUALITY, COHERENCE and
 WAVE MIXING:

An Introduction to the Emerging New Science of Sound

```
Pierre A. Deymier
            and
        Keith Runge
```


$5^{\text {th }}$ International Conference on Phononic Crystals/ Metamaterials, Phonon Transport and Phonon Coupling June 2-7, 2019 - Tucson, Arizona, USA

