Recent Results on Acoustic Metamaterials and Sonic Crystals

José Sánchez-Dehesa

Wave Phenomena Group , Universitat Politècnica de València, Camino de vera s.n., ES-46022 Valencia, Spain

<u>Outline</u>

- 1. Introduction
- 2. Acoustic metamaterials with negative parameters
- 3. Visco-thermal effects in acoustic metamaterials with double-negative parameters
- 4. Sound absorption and redirection with sonic crystals based on metamaterials units

METAgenierie2017, 2-7 July.

Recent Results on Acoustic metamaterials

OUTLINE

1. Introduction

- 2. Acoustic metamaterials with negative parameters
- 3. Visco-thermal effects in acoustic metamaterials with double-negative parameters
- 4. Sound absorption and redirection with sonic crystals based on metamaterial units

Acoustic metamaterials / metafluids

Acoustic metamaterials are artificial structures made of subwavelength units such that their acoustic properties are NEW in comparison with that of the building units

Acoustic metamaterials

M. Haberman, M. Guild, Acoustic metamaterials. Physics Today, June 2016.

Li and Chan, PRE (2004)

Acoustic metamaterials / Metafluids

Recent Results on Acoustic metamaterials

OUTLINE

1. Introduction

- 2. Acoustic metamaterials with negative parameters
- 3. Visco-thermal effects in double-negative acoustic metamaterials
- 4. Sound redirection and splitting based on metamaterial units

INTRODUCTION: metamaterials with negative bulk modulus

N. Fang et al., Ultrasonic metamaterials with negative bulk modulus, Nat. Mat. 5, 452 (2006)

Effective modulus:

$$E_{\text{eff}}^{-1}(\omega) = E_0^{-1} \left[1 - \frac{F\omega_0^2}{\omega^2 - \omega_0^2 + i\Gamma\omega} \right], \text{ where } \Gamma \text{ is the dissipation loss in the HR:}$$

METAgenierie2017, 2-7 July.
$$\Gamma = 2\pi \quad 400 \text{Hz}$$

The quasi-2D metafluid

2D Waveguide (h) + cylindrical holes (R, L)

hexagonal lattice with parameter *a*

holes with R=1 *cm*, L=9 *cm*, *a*=3*cm* 2D waveguide with h= 5 *cm*

METAgenierie2017, 2-7 July.

García-Chocano et al., Phys. Rev. B, 85, 184102 (2012)

Double negative MtM: building unit

Pressure Field In the Region I

$$P^{I}(r,\theta,z;w) = \sum_{q,n} [A_{qn}J_{q}(K_{n}^{I}r) + B_{qn}H_{q}(K_{n}^{I}r)]\Phi_{n}^{I}(z)\exp(iq\theta)$$

$$K_n^I = \sqrt{\left(\frac{w}{C_b}\right)^2 - \left(\frac{n\pi}{h}\right)^2}$$

Pressure Field in the Region II

$$P^{II}(r,\theta,z;w) = \sum_{q,m} \left[C_{qm} J_q(K_m^{II} r) - \frac{\dot{J}_q(K_m^{II} R_a)}{\dot{Y}_q(K_m^{II} R_a)} Y_q(K_m^{II} r) \right] \Phi_m^{II}(z) \exp(iq\theta)$$

 $K_m^{II} = \sqrt{\left(\frac{w}{C_b}\right)^2 - \left(\frac{m\pi}{h+L}\right)^2}$

Double negative metamaterial: T matrix approach

Torrent and JSD, New J. Phys., **13**, 093018 (2011)

Building unit: Metafluid cylinder with $c < c_{air}$

0.2

0.25

MtM with negative parameters: resonant behavior of the building units

METAgenierie2017, 2-7 July. Graciá-Salgado, Torrent and JSD, NJP 14, 103052 (2011) Quasi-2D structure for double negative and $\rho \approx 0$ (DNZ) behavior

Quasi-2D structure for double negative and DNZ behavior

ρ-near-zero (DNZ) metamaterials

$$> c_m = \sqrt{\frac{B_m}{\rho_m}} \to \infty$$

 $|n_m \approx 0|$

 $e^{ik_m x} \approx 1$

$$\left|Z_{m}\right|^{2} = \rho_{m}B_{m} \approx \rho_{b}B_{b} = \left|Z_{b}\right|^{\text{Surface: Pressure (Pa)}}$$

Transmission through narrow channels $\lambda >>a$

Applications of DNZ metamaterials: control of the radiation patern

Scattering by a rigid cylinder + MtM slab (both embedded in a 2D waveguide)

Scattering at the frequency where the MtM behaves as a p-near-zero material

Applications of DNZ metamaterials:

• Power splitter

• Perfect transmission through waveguides with sharp corners

METAgenieri<mark>e2017, 2-7 July.</mark>

Quasi-2D acoustic metamaterials: Practical realization

Sample B a=21 mm R_b=7mm h=9mm L=2.5h

METAgenierie2017, 2-7 July.

Quasi-2D acoustic metamaterials: Practical realization

Experimental characterization

Acoustic metamaterials

OUTLINE

1. Introduction

- 2. Acoustic metamaterials with negative mass density and density near zero
- 3. Visco-thermal in acoustic metamaterials with double-negative parameters
- 4. Sound redirection and splitting with sonic crystals based on metamaterial units

METAgenierie2017, 2-7 July.

A. D. Pierce, "Acoustics. An introduction to its physical principles and applications". McGraw Hill, New York, 1981.

Viscous and thermal losses

Linearized Navier-Stokes model:

• Conservation of mass:

$$\frac{\partial \rho}{\partial t} + \rho_o \nabla \vec{v} = 0$$

• Conservation of energy:

$$\rho_o T_o \frac{\partial s}{\partial t} = \lambda \, \Delta T$$

• Conservation of momentum (Navier-Stokes equation):

$$\rho_{o} \frac{\partial \vec{v}}{\partial t} = -\nabla p + \left(\eta + \frac{4}{3}\mu\right) \nabla \langle \nabla \vec{v} \rangle - \mu \nabla \times \langle \nabla \times \vec{v} \rangle$$

• Thermodynamic equations:

$$s = \frac{C_p}{T_o} \left(T - \frac{\gamma - 1}{\beta \gamma} p \right) \qquad \rho = \frac{\gamma}{c^2} \, \phi - \beta \, T \, \Big]$$

A. D. Pierce, "Acoustics. An introduction to its MEys Agenierie 20st and apple ytions". McGraw Hill, New York, 1981. Ch. 10

Numerical methods for Visco-Thermal losses

	Time/Load	SW package
 Low reduced frequency model (LRFM): Neglects pressure variation and velocity component in the direction normal to the boundary. Restricted to some geometries 	Fast/Low	ACTRAN, ANSYS, COMSOL
 Finite Element Method (FEM) implementation: Direct implementation of the linearized Navier- Stokes equations. No restricting assumptions. 	Slow/High	COMSOL
 Boundary Element Method (BEM) implementation: Uses Kirchhoff's decomposition of the linearized N-S equations. No restricting assumptions. 	Slow/High	OpenBEM (non-commercial)

LRFM: W. M. Beltman. Viscothermal wave propagation including acousto-elastic interaction. Part I: Theory and Part II: Applications. J. Sound Vib. 227 (3), 1999.

FEM: M. Malinen, M. Lyly, P. Råback, A. Kärkkäinen and L. Kärkkäinen. A finite element method for the modeling of thermo-viscous effects in acoustics. Proc. 4th ECCOMAS, Jyväskylä, Finland, 1-12, 2004.

BEM: V. Cutanda Henriquez, P.M. Juhl, *An axisymmetric boundary element formula on of sound wave propagation in Puriads including viscous and thermal losses*, JASA 134(5), 2013. V. Cutanda Henriquez, P.M. Juhl, *Implementation of an Acoustic 3D BEM with Visco-Thermal Losses*, Internoise 2013, Innsbruck, Austria.

Metamaterial: transmission and reflection

<u>Three-point method:</u> Reflection and transmission coefficients:

$$R(\omega) = \frac{p_2 e^{-ikx_1} - p_1 e^{-ikx_2}}{p_1 e^{-ikx_2} - p_2 e^{-ikx_1}} \qquad T(\omega) = \frac{p_3}{p_2} \frac{e^{-ikx_2} + R(\omega)e^{ikx_2}}{e^{-ikx_3}} e^{-ikx_2 - x_1}$$

- Transmittance (fraction of transmitted power): $|T(\omega)|^2$
- Reflectance (fraction of reflected power): $|R(\omega)|^2$
- Absorbance (fraction of absorbed power): $1 |T(\omega)|^2 |R(\omega)|^2$

R. Graciá-Salgado, V. M. García-Chocano, D. Torrent, J. Sánchez-Dehesa, *Negative mass density and p-near-zero quasi-two-dimensional metamaterials: Design and applications*. Physical Review P 88, 224305 (2013) METAgenierie2017, 2-7 July.

FEM versus BEM

Acoustic band structure (no losses)

Parameter extraction (with losses)

METAgenierie2017, 2-7 July. Extracted from R and T, following the method of Fokin *et al.*, PRB **77**, 144302 (2007)

Frequency dependence (with losses)

A=1-R-T

- Absorption in the first passband increases with decreasing v_a
- In the DN band there is a huge reflectance and almost a 100% of the transmitted energy is ahsagered_{ie2017, 2-7 July.}

Double-negative metamaterial

Double-negative metamaterial

Scaling of the metamaterial

- As the size grows the frequency is scaled down: the **mesh can be reused**
- The behavior should be the same, except for viscous and thermal losses (as f^{-1/2}):

$$\delta_{\nu} \approx \sqrt{\frac{2\nu}{\rho_0 \omega}} \qquad \delta_{\kappa} \approx \sqrt{\frac{2\kappa}{c_p \rho_0 \omega}}$$

TITIT	f (Hz)	viscous layer (µm)	thermal layer (μm)
	100 1000	210 66	250 79
THURSDAY SHE THE THE	10000 20000	21 15	25 16
METAgenierie2017, 2-7			
	-		

Double-negative metamaterial

Double-negative metamaterial

V. Cutanda-Henríquez, V. M. García-Chocano and J. Sár METAgen, ies es July uble Negative Acoustics Metamaterials, Physical Review Applied (in press, 2017)

Visco-thermal effects:

- Visco-thermal losses **should be considered** in order to obtain a realistic design of single- and double-negative metamaterials.
- The double-negative phenomena might be **suppressed by losses**.
- High loss is **persistent** at the double-negative band, even when the structure is **scaled up**.
- Double-negative metamaterials might be a **good alternative to conventional absorbers** for specific situations, e.g., when dealing low frequencies or when the excitation is narrow banded.
- Some properties of metamaterials may survive losses, with the proper design:
 - Use less rows of units.
 - Find resonators with less losses (e.g. with optimization)

Recent Results on Acoustic metamaterials

OUTLINE

- 1. Introduction
- 2. Acoustic metamaterials with negative parameters
- 3. Viscothermal effects in acoustic metamaterials with double-negative parameters
- 4. Sound absorption and redirection with sonic crystals based on metamaterial units

Sonic crystals / Phononic Crystals

GFC

Eusebio Sempere (Spanish artist)

R. Martinez-Sala et al. Nature (1995)

Transmission properties of sonic crystals

What is the minimum number of rows?

Noise barriers made of porous materials (rubber crumb)

300 million used tires are removed annually in the 27 EU Member states

- <u>Perforated shells with mm-size holes</u> are (almost) acoustically transparent.
- They are used as containers of absorbing materials (rubber crump, fiber glass, etc..).

Barriers for traffic noise: OPTIMIZATION APPROACH

Objetive function: index of isolation for airborne noise

Class B_1 : $DL_R < 15 dB$

$$DL_{R} = -10\log \frac{\left| \sum_{i=1}^{18} 10^{0.1L_{i}} 10^{-0.1R_{i}} \right|}{\sum_{i=1}^{18} 10^{0.1L_{i}}} \quad \text{(UNE-EN 1793)}$$

Class B₃: DL_R>24 dB

L_i is the normalized spectrum of traffic noise (defined in 18 thirds of octave band between 100 Hz and 5kHz)

R_i is the transmission loss by the barrier

Class Not TAgenieria 20 0 20 20 24. dB

Barriers for traffic noise based on rubber crumb

Table 1

Barrier parameters (see Fig. 2) obtained from the optimization algorithm. Length dimensions are in cm. Last row contains the airborne insulation index DL_R . Note that the highest quality barriers, class B_3 , according to the European normative is achieved when $DL_R > 24$ dB [16].

	Т		T _{eff}		T'_{eff}	T'_{eff}		$T_{eff}^{\prime\prime}$	
		Δ		Δ		Δ		Δ	
<i>r</i> ₁	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
r ₂	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
r ₃	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
r _{i1}	4.6	10.0	3.4	5.1	4.2	7.3	4.5	9.2	
r _{i2}	4.3	5.0	4.0	4.3	4.3	4.1	4.3	3.8	
r _{i3}	4.7	9.5	4.5	10.0	4.6	10.0	4.7	9.4	
d_1	32.1	18.2	31.2	18.2	31.8	18.2	32.1	18.2	
d ₂	48.9	18.2	49.8	18.2	49.1	18.2	48.9	18.2	
D	40.0	21.0	40.0	21.0	40.0	21.0	40.00	21.0	
DL_R (dB)	7.2	18.6	6.7	16.6	14.0	24.7	21.1	(32.1)	

Class B₃: DL_R>24 dB

METAgenierie2017, 2-7 July. García-Chocano & JSD, Appl. Acoust., **74**, pp. 58-62 (2013).

Noise barriers based on µ-perforated shells Properties of flat perforated panels

• Impedance of a <u>flat perforated panel</u> (Ingard, Allard, Atalla, Åbom, etc.: $Z_{P} = \frac{i\omega\rho_{0}t}{\sigma} \left[1 - \frac{2}{s\sqrt{-i}} \frac{J_{1}(s\sqrt{-i})}{J_{1}(s\sqrt{-i})} \right]^{-1} + \frac{4}{\sigma} \sqrt{2\eta_{0}\omega\rho_{0}} + \frac{i\omega\rho_{0}}{\sigma} \frac{16r}{3\pi} \left(1 - 2.5\sqrt{\frac{\sigma}{\pi}} \right)$

For large holes
$$r >> \delta = \sqrt{\frac{2\eta_0}{\rho_0 \omega}}$$

and moderate filling fractions σ , the panel has low Z_p .

Small holes ($r \approx 1 \mu m$) lead to absorbing panels. D.-Y. Maa, JASA **104**, 2861 (1998).

- The T-matrix of a perforated shell is obtained from an impedance based model: $T_{q} = -\frac{\rho_{q}J'_{q} \langle q_{0}R^{+} - J_{q} \langle q_{0}R^{+} \rangle}{\rho_{q}H'_{q} \langle q_{0}R^{+} - H_{q} \langle q_{0}R^{+} \rangle} \quad \rho_{q} = \frac{J_{q} \langle q_{0}R^{-} \rangle}{J'_{q} \langle q_{0}R^{-} \rangle} \frac{iZ_{p}k_{0}}{\omega\rho_{0}}$
- Transmission through a lattice of perforated shells has been calculated using Multiple Scattering Theory

METAgenierie2017, 2-7 July.

García-Chocano, Cabrera and JSD., APL 101, 184101 (2012)

Attenuation of broadband noise: SC made of μ-perforated shells

 μ-perforated shells are interesting due to the absorptive properties of μperforations.

3 rows of 30 cylinders (R=16cm, h=3m) and *a*=22cm.

Acoustic barriers based on lattices of μ -perforated shells

- No foundations are needed
- The flow of wind passes through the barrier
- Lightweight and robust
- Great aesthetic

CONS:

• Expensive

(The cost can be substantially reduced by using massive manufacturing methods)

Redirection of sound with a sonic crystal made of perforated thin shells

Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

Acoustic Poisson-like Effect in Periodic Structures

Alexey S. Titovich¹, <u>Andrew N. Norris¹</u>

¹ Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, USA, alexey.titovich@rutgers.edu, norris@rutgers.edu

if λ is on the order of the spacing, the scattered quadrupoles are in phase and coherently redirect acoustic energy by 90 degrees.

Sound redirection by Wood anomalies

• Absorption enhancement oc Mers artire frequencies with minimum transmittance.

Non-dissipative case ($\eta_0=0$)

Frequency

3080+*i*4

- Full transmission occurs except at around 3kHz.
- Total reflection is found at $\lambda \approx a$ even for one row.
- T minima show Fano-like profiles indicating the excitation of resonant Wood anomalies.

Energy redirection due to Wood anomalies

- The resonant anomaly involves modes guided along the slab.
- Propagating modes are observed when exciting the slab with a Gaussian beam.

Pressure at the far field (a. u.)

METAgenierie2017, 2-7 July.

García-Chocano & JSD, APL 106, 124104 (2015)

Energy splitting with a linear chain of perforated thin shells

The case of a linear chain

Incident plane wave:

 $p(\mathbf{r}) = p_0 \exp(i\mathbf{k} \cdot \mathbf{r})$

Acoustic field inside each shell:

 $p_{in}(r_l,\varphi_l) = \sum_{n=-\infty}^{\infty} C_{ln} J_n(kr_l) e^{in\varphi_l}$ Scattered acoustic field: $p_{sc}(r,\varphi) = \sum_{l'} \sum_{n=-\infty}^{+\infty} B_{l'n} H_n(kr_{l'}) e^{in\varphi_{l'}}$

Boundary conditions

The **impedance approach** is used to match the acoustic fields **inside** and **outside** each individual microperforated shell

Effective acoustic impedance of the flat plate:

$$Z_p = -\frac{i\omega\rho_0}{\sigma} \left[h + \frac{16s}{3\pi} \left(1 - 2.5\sqrt{\frac{\sigma}{\pi}} \right) \right]$$

Dah-You Maa, J. Acoust. Soc. Am. 104, 2861 (1998).

Acoustic band structure: $\omega(q)$

After some algebra...

$$\det |\mathcal{S}_n \delta_{nn'} + F(n'-n)| = 0. \qquad \longleftrightarrow \ \omega(q)$$
$$n = 0, \pm 1, \pm 2, \dots$$

asymmetric bandgap

Eigenmode excitation

Splitting of a bi-frequency signal

25 perforated shells

inviscid air

8% (low f. component10% (high f. component)

Low frequency component (in red) propagates against the *natural* direction!! METAgenierie2017, 2-7 July.

Bozhko, JSD, Cervera and Krokhin, Phys. Rev. Appl. (in press)

Splitting of a bi-frequency signal Numerical experiments (FEM simulations)

$$f_1 = 2520 \text{ Hz}$$
 METAgenierie2017, 2-7 July. $f_1 = 3520 \text{ Hz}$

Summary

Thanks Tor your attention!