Programme > References café scientifique

Acoustic Metamaterials embedded in a fluid

Audible waves

[1] Sugimoto, N. and Horioka, T., J. Acoust. Soc. Am. 97, 1446–1459, (1995)
[2] Z. Liu, et al. Science , 289, 1734 (2000);
[3] N. Fang et al., Nature Materials  5, 452 (2006)
[4] D. Torrent, et al.Physical Review Letters, Vol. 96, 204302 (2006).
[5] D. Torrent et al., Phys. Rev. B, Vol. 74, 224305 (2006)
[6] Sam Hyeon Lee, Phys. Rev. Lett. 104, 054301 (2010)
[7] ZY Yang, J Mei, M Yang, NH Chan, P Sheng Physical review letters 101 (20), 204301, (2008)
[8] G. Ma,Nat. Mat., 3994, DOI:10.3994, (2014),
[9] V. Romero-García  et al. Scientific Reports, 5, 19519,(2016)

Underwater acoustic

Invisibility cloak for ultrasonics
[1] Zhang S, Xia C and Fang N, 2011, Broad band acoustic cloak for ultrasound waves, Phys. Rev. Lett. 106 024301. doi: 10.1103/PhysRevLett.106.024301
Locally resonant/highly dispersive materials (bubbles, Mie-resonances, bulk materials, metasurface/Alberich type coatings, anechoism, water-borne sound-barriers, negative/zero-index materials)
[2] A. Bretagne, A. Tourin and V. Leroy, Enhanced and reduced transmission of acoustic waves with bubble meta-screens, Appl. Phys. Lett. 99, 221906 (2011); doi: http://dx.doi.org/10.1063/1.3663623
[3] V. Leroy et al., Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B 91, 020301(R), 2015
[4] T. Brunet et al., Soft 3D acoustic metamaterial with negative index, Nature Materials 14, 384–388 (2015) doi:10.1038/nmat4164
Metal-Water material (Pentamode materials, Negative refraction, PC w. Impedance matching)
[5] A. N. Norris and A.J. Nagy, Metal Water: A Metamaterial for Acoustic Cloaking, proceedings of Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics, May 29-June 2 2017, Santa Fe, New Mexico, USA
[6] A.-C. Hladky-Hennion, et al., Negative refraction of acoustic waves using a foam-like metallic structure, Appl. Phys. Lett. 102, 144103 (2013); doi: 10.1063/1.4801642
Application to radiation-pattern control (Transformation acoustics, Instrumentation, Underwater acoustics experiments)
[7] Alexey S. Titovich and Andrew N. Norris and Michael R. Haberman, A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements, The Journal of the Acoustical Society of America 139, 3357 (2016); doi: http://dx.doi.org/10.1121/1.4948773

 

Mechanical metamaterials

[1] Wang P, Zheng Y, Fernandes MC, Sun Y, Xu K, Sun S, Kang SH, Tournat V, Bertoldi K. Harnessing Geometric Frustration to Form Band Gaps in Acoustic Networks. Physical Review Letters [Internet]. 2017;118 (8) :084302

[2] Experiments on elastic cloaking in thin plates. N Stenger, M Wilhelm, M Wegener. Physical Review Letters 108 (1), 014301

[3] Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. L. Airoldi, M Ruzzene - New Journal of Physics, 2011

[4] On the practicability of pentamode mechanical metamaterials. M Kadic, T Bückmann, N Stenger, M Thiel, M Wegener Applied Physics Letters 100 (19), 191901

[5] Abdelkrim Khelif, Younes Achaoui, Sarah Benchabane, Vincent Laude and B Aoubiza, Locally resonant surface acoustic wave band gaps in a two-dimensionam phononic creystal of pillars on a surface. Physical Review B 81 (21), 214303, 2010

[6] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. Lopez, and J. Llinares,  Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal, Physical Review B 59, 12169, 1999

Acoustic metamaterials for seismic waves

[1] Stéphane Brûlé, Emmanuel Javelaud, Stefan Enoch, Sébastien Guenneau,
Experiments on seismic metamaterials: Molding surface waves
Physical review letters 112 (13), 133901, 2014

[2] Andrea Colombi, Daniel Colquitt, Philippe Roux, Sébastien
Guenneau, and Richard Craster, A seismic metamaterial : The resonant metawedge
Scientific Reports 6, 27717, 2016.

[3] Andrea Colombi, Sébastien Guenneau, Philippe Roux, and
Richard Craster, Transformation seismology : composite soil lenses for steering
surface elastic Rayleigh waves
Scientific Reports 6, 25320, 2016.

[4] Andrea Colombi, Philippe Roux, Sebastien Guenneau, Philippe
Gueguen, and Richard V. Craster, Forests as a natural seismic metamaterial : Rayleigh wave
bandgaps induced by local resonances Scientific Reports 6, 19238, 2016

[5] S. Krodel, N. Thomé and C. Daraio, Wide band-gap seismic metastructures, Extreme Mechanics Letters 4, 111–7, 2015

[6] Marco Miniaci, Anastasiia Krushynska, Federico Bosia and Nicola M Pugno, Large scale mechanical metamaterials as seismic shields,
New Journal of Physics 18, 083041, 2016

[7] Philippe Guéguen and Andrea Colombi, Experimental and numerical evidence of the clustering effect of structures on their response udring an earthquake: A case study of three identical towers in the city of Grenoble, France Bulletin of the Seismological Society of America 106 (6), 2855-2864, 2016

[8] V.K. Dertimanis, I.A. Antoniadis, and E.N. Chatzi (2016). Feasibility analysis on the attenuation of strong ground motions using finite periodic lattices of mass-in-mass barriers. Journal of Engineering Mechanics, 142(9).

[9] D.J. Colquitt, A. Colombi, R. V. Craster, P. Roux and S. Guénneau (2017), Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction Journal of the Mechanics and Physics of Solids 99, 379-393.

[10] A. Palermo, S. Krödel, A. Marzani and C. Daraio. Engineed metabarriers as shield from seiemi surface waves, Sci. Rep. 6, 39356. (2016)

Acoustic metamaterials for RF applications

[1] S. Mohammadi, A. A. Eftekhar, W. Hunt, and A. Adibi, Appl. Phys. Lett. 94 , 051906 (2009)., pour un cristal phononique employé dans un contexte de résonateur Fabry-Pérot ;

[2] Y Achaoui, A Khelif, S Benchabane, L Robert, V Laude, Physical Review B 83 (10), 104201 pour illustrer la notion de bandes interdites à résonances locales,

[3] D. Hatanaka, I. Mahboob, K. Onomitsu, H. Yamaguchi, "Phonon waveguides for electromechanical circuits", Nature Nanotechnology, 9, 520 (2014), pour avoir une vision un peu différente de ce qu'on l'on peut entendre par "phononique" ;

[4] B. Bahr, R. Marathe and Dana Weinstein, "Theory and Design of Phononic Crystals for Unreleased CMOS-MEMS Resonant Body Transistors", JMEMS 24, 1520 (2015), pour une application un peu moins conventionnelle;

[5] Planar ring-shaped phononic crystal anchoring boundaries for enhancing the quality factor of Lamb mode resonators,Appl. Phys. Lett. 109, 203501 (2016), sur l'utilisation de cristaux phononiques pour augmenter le coefficient de qualité de résonateurs à modes de Lamb ;

[6] G. Wu, Y. Zhu, S. Merugu, N. Wang, C. Sun, Y. Gu, “GHz spurious mode free AlN Lamb wave resonator with high figure of merit using one dimensional phononic crystal tethers”, Appl. Phys. Lett. 109, 013506 (2016), sur l’utilisation de cristaux phononiques pour former les ancrages de résonateurs à ondes de Lamb ;

[7] M. Solal, J. Gratier, T. Kook, « A SAW resonator with two-dimensional reflectors”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 30 (2010), sur l’utilisation de cristaux phononiques 2D pour supprimer des modes parasites dans des résonateurs SAW ;

[8] K.C. Balram, M.I. Davanço, J.D. Song, K. Srinivasan, "Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits", Nature Photonics 10, 346 (2016) pour une ouverture vers l'optomécanique.

 

Personnes connectées : 1 Flux RSS